{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9f7e8dda80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9f7e8ddb20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9f7e8ddbc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9f7e8ddc60>", "_build": "<function ActorCriticPolicy._build at 0x7f9f7e8ddd00>", "forward": "<function ActorCriticPolicy.forward at 0x7f9f7e8ddda0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9f7e8dde40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9f7e8ddee0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9f7e8ddf80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9f7e8de020>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9f7e8de0c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9f7e8de160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9f7e9f2680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1740018792229981172, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFqEzz2uk4O6M/hZurywY7U3mzI7Lud9OQAAAAAAAIA/TfAdvdHnuT/YUR+/0i52Ph+Klzxfhga9AAAAAAAAAADN87u9j85rulblArqaTTu1/EgLug8jGDkAAAAAAACAP8OUgz4cVWI/3i37PqYiG7/HFKQ+XXhOPQAAAAAAAAAA462CvhNQrT+dIv6+F8KSvrvWhr6G5ZW9AAAAAAAAAAAA+489SMu+up7YR7vMibg35JZiuOvTBToAAIA/AACAP42z570vzoo/eHBWvgsehr5H4we+c3RXOwAAAAAAAAAAGgA9vedFXz+l45M8fSd9vlLqqrzQSJs9AAAAAAAAAACzSG09HBA8vLduKL0nPVg9U401PcaxwrwAAIA/AACAP4AoMj3DgV+6qPvwulx+JrYUhbY6M8MMOgAAgD8AAIA/AO9IvuHVmz8jwH6+UhmZvly1ar7CSNw6AAAAAAAAAADm3Ui96bQFvHLywLtkF5g8nS9tvQZ7fT0AAIA/AACAPwC6+Lx7WoK68gACuM4/ArOE0NQ5XIkXNwAAgD8AAIA/On9nPnln3j4Kq329cZ5wvs70BbzNdX09AAAAAAAAAADNnOA7KDG0PxhMrj4tBqu9+q+/uxh/Fr0AAAAAAAAAAM3jdD1U38a8u3v1u6GYDD32Ky4+O4rUvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG2ckrXlKbuMAWyUTTADjAF0lEdAktp1ZgXuV3V9lChoBke/61t4zJp35mgHTRQBaAhHQJLbB9RaX8h1fZQoaAZHQHBkkkv9LpRoB022AWgIR0CS24V+7UXpdX2UKGgGR0BxRnLPldTpaAdNGQJoCEdAkt+UdeY2KnV9lChoBkdATg3ueBg/kmgHS6toCEdAkuEoInjQzHV9lChoBkdAcQ1ENvwVkGgHTbsBaAhHQJLhN9G7SRd1fZQoaAZHQG7cJw0fozNoB00qA2gIR0CS4tjJ+2E1dX2UKGgGR0BiwjyWiUPhaAdN6ANoCEdAkuVec6Nly3V9lChoBkdAZIV1AZ88cWgHTegDaAhHQJLtLg1m8NB1fZQoaAZHQB7jSLIgeRxoB0v4aAhHQJLtV8WsRxt1fZQoaAZHQG66j4QBgeBoB03gAWgIR0CS8qXwLE1mdX2UKGgGR0BxpmhPCVKPaAdNigFoCEdAkvMGycCo0nV9lChoBkdAcnVYtQKrrGgHTTgDaAhHQJLzYlzEJjV1fZQoaAZHQHBb2E0zj3poB02rAWgIR0CS9g9Htnf3dX2UKGgGR0BeoX/LkjoqaAdN6ANoCEdAkvagnlXA/XV9lChoBkdAb4VJo0ygw2gHTZUDaAhHQJL3ozqKP4p1fZQoaAZHQD82YYzi0fJoB0voaAhHQJL4KzhP0qZ1fZQoaAZHQHAYM495hSdoB02nAmgIR0CS+DuKXOW0dX2UKGgGR0By4ZnoPkJbaAdNcQJoCEdAkvlfhuO0cHV9lChoBkdAb77VVghKUWgHTfsCaAhHQJL6UihWYF91fZQoaAZHQFD1aOgg5ipoB0u1aAhHQJL67QiRnvl1fZQoaAZHQGLDOSntOVRoB03oA2gIR0CS/K2RaHKwdX2UKGgGR0ByaE76pHZsaAdNKAFoCEdAkwBTUqhDgXV9lChoBkdAYno/keZG8WgHTegDaAhHQJMC1cv/R3N1fZQoaAZHQFZD3dsSCe5oB0vYaAhHQJMDnZrYXft1fZQoaAZHQHCA7AYYR/VoB00cAWgIR0CTA5sFt8/mdX2UKGgGR8AjVv60pmVaaAdL72gIR0CTGa4hEBsAdX2UKGgGR0Bv9EEvCdjHaAdNQgFoCEdAkxqnNgSey3V9lChoBkdAb98DvmYBvWgHTS8CaAhHQJMat3cHnlp1fZQoaAZHQHGWaFVT72toB023A2gIR0CTGw8FY+0PdX2UKGgGR0BxhSyv9tMxaAdNfQFoCEdAkx0MGgSOBHV9lChoBkdAckJYg7o0RGgHTcsBaAhHQJMftLxqfvp1fZQoaAZHQHI7dPtUn5VoB01PA2gIR0CTIB9x6v7ndX2UKGgGR0ByZGnyd4FBaAdNZAFoCEdAkyAfv0AcUHV9lChoBkdAcbYG1QZXMmgHTaUDaAhHQJMheUu+RHR1fZQoaAZHQHEcrmhdt2toB03eAWgIR0CTIxwg1WKedX2UKGgGR0Btk+nO0LMLaAdNRwFoCEdAkygU+1SflXV9lChoBkdAbQ9T3IuGsWgHTYIBaAhHQJMoNschkiF1fZQoaAZHQHA9mL9/BnBoB00JA2gIR0CTKo2606YFdX2UKGgGR0BwHbeenQ6ZaAdN4wJoCEdAkyvLCJoCdXV9lChoBkdAcAgD4QBgeGgHTQ4CaAhHQJMsYblzU7V1fZQoaAZHQHC2/qgRK6FoB014AWgIR0CTLKtZmqYJdX2UKGgGR0Bs7FOZb6gvaAdNBQFoCEdAky2NZq20A3V9lChoBkdAciVk1uR9w2gHTV0BaAhHQJMuZfsu3+d1fZQoaAZHQG1A5S3solVoB01JAWgIR0CTMLnh86V/dX2UKGgGR0Bw3BXvH93saAdNTgJoCEdAkzKov38GcHV9lChoBkdAclaeii7Ci2gHTUACaAhHQJMy2BK+SKZ1fZQoaAZHQEUU73fyf+VoB0voaAhHQJM0aMCLdep1fZQoaAZHQFTvXBP9DQZoB0vPaAhHQJM2md3B55Z1fZQoaAZHQHBLTYEnssxoB01eAmgIR0CTOBcjqv/zdX2UKGgGR0BMlqiwjdHlaAdL+2gIR0CTOGRb8m8edX2UKGgGR0BxX3fsNUfgaAdNAgJoCEdAkzl3PmganHV9lChoBkdAcPbgdOqNqGgHTTwBaAhHQJM8PrE9+w11fZQoaAZHQEcDD1oQFs5oB0vSaAhHQJM+DTXrdFh1fZQoaAZHQHHV2H58BuJoB01IAWgIR0CTP5IFeOXFdX2UKGgGR0BvtGbI91U3aAdNVAFoCEdAk0JfE87p3XV9lChoBkdAbIRVQQ+UyGgHTW4BaAhHQJNDaj+Jgst1fZQoaAZHQHDtYgvDgqFoB01iAmgIR0CTRmXWOIZZdX2UKGgGR0Bv9IymALApaAdNYQFoCEdAk0dcgpz90nV9lChoBkdAW/axA0Kqn2gHTegDaAhHQJNfp9c8klh1fZQoaAZHQHJvQksz2vloB00GAWgIR0CTYE9rXUYsdX2UKGgGR0Bw4iGvfTCtaAdNgwFoCEdAk2BxZuAI6nV9lChoBkdAbmvLjghr32gHTW0DaAhHQJNjntlZowp1fZQoaAZHQEzrFjNIK+loB0vsaAhHQJNkOVVxS511fZQoaAZHQHByheTmnwZoB03fAmgIR0CTZEyULUkOdX2UKGgGR0BylSR+z+m4aAdNtgJoCEdAk2SKzAvcrXV9lChoBkdAbSxRjz7MxGgHTYoBaAhHQJNkhcRlHz91fZQoaAZHQGVpWfbsWwhoB03oA2gIR0CTZsJMQEpzdX2UKGgGR0BwbFzaK1ohaAdNEwJoCEdAk2c6jzqbB3V9lChoBkdAcTwIvrWy1WgHTTABaAhHQJNs3kXDWLB1fZQoaAZHQGILpcgQpWpoB03oA2gIR0CTbmMz/IbPdX2UKGgGR0Bwb4m5UcXFaAdNOAFoCEdAk3C9zS1E3XV9lChoBkdAbfbcer+5v2gHTX0BaAhHQJNwux9oexR1fZQoaAZHQG2EZBsyi25oB00xAWgIR0CTcSChvitJdX2UKGgGR0BwqmkP+XJHaAdNMAFoCEdAk3Ermp2lmHV9lChoBkdAciBcDKYAsGgHTYICaAhHQJNyDDye7MB1fZQoaAZHQG0u2/BWPtFoB00bAWgIR0CTcxb+98JEdX2UKGgGR0Btdv531SOzaAdNFgFoCEdAk3NgKv3ajHV9lChoBkdAbrZKU3XI2mgHTWYDaAhHQJN0eYiPhhp1fZQoaAZHQHFlMUM5OrRoB025AWgIR0CTdrQiiZfEdX2UKGgGR0BwUBoIv8IiaAdN3QFoCEdAk3gvsNUfgnV9lChoBkdAcvAMju8brGgHTUkBaAhHQJN6tYJVsDZ1fZQoaAZHQG9MAq/dqL1oB01CA2gIR0CTfACUX531dX2UKGgGR0BxR9e3QUpNaAdNDgFoCEdAk3zJ+DvmYHV9lChoBkdAbO1ZW7voeWgHTTUBaAhHQJN9JUrCm/F1fZQoaAZHQHFeyQgcLjRoB003AWgIR0CTfTvLowEhdX2UKGgGR0BshdbiZOSGaAdNQQFoCEdAk34TbnHNo3V9lChoBkdAcAftqpLmIWgHTX0BaAhHQJN+HTRYzSF1fZQoaAZHQHJ8lBppN9JoB01LAWgIR0CTfmEqDsdDdX2UKGgGR0BxFGk56t1ZaAdNOwNoCEdAk37GvfTCtXV9lChoBkdAcC33G4qgAmgHTV4BaAhHQJOA1US7GvR1fZQoaAZHQHCnVnVXmvJoB00NAWgIR0CTgRNRFZxJdX2UKGgGR0BE8GNrCWNWaAdLxWgIR0CThATgVGkOdX2UKGgGR0BgK+RV6u4gaAdN6ANoCEdAk4YzxPO6d3V9lChoBkdAQlHI0ZWJamgHS+xoCEdAk4ceyZ8a43V9lChoBkdAcTWYChew92gHTSQBaAhHQJOHWYIBzWB1fZQoaAZHQHC3aDkELYxoB01/AWgIR0CTh1pmmLtNdX2UKGgGR0Byel/CqIacaAdNBAJoCEdAk4dbSuyNXHV9lChoBkdAZEld69kBjmgHTegDaAhHQJOIs4sEq2B1fZQoaAZHQHDCyBPKuCBoB00vAWgIR0CTiNfKISDidWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |