lfhase commited on
Commit
0acdbd9
·
verified ·
1 Parent(s): 334f0e5

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. hvqvae.pth +3 -0
  2. llama2/graph-text-molgen/forward_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/README.md +9 -0
  3. llama2/graph-text-molgen/forward_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/adapter_config.json +26 -0
  4. llama2/graph-text-molgen/forward_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/adapter_model.bin +3 -0
  5. llama2/graph-text-molgen/forward_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/config.json +35 -0
  6. llama2/graph-text-molgen/forward_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/non_lora_trainables.bin +3 -0
  7. llama2/graph-text-molgen/forward_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/trainer_state.json +0 -0
  8. llama2/graph-text-molgen/reagent_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/README.md +9 -0
  9. llama2/graph-text-molgen/reagent_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/adapter_config.json +26 -0
  10. llama2/graph-text-molgen/reagent_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/adapter_model.bin +3 -0
  11. llama2/graph-text-molgen/reagent_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/config.json +35 -0
  12. llama2/graph-text-molgen/reagent_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/non_lora_trainables.bin +3 -0
  13. llama2/graph-text-molgen/reagent_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/trainer_state.json +0 -0
  14. llama2/graph-text-molgen/retrosynthesis-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/README.md +9 -0
  15. llama2/graph-text-molgen/retrosynthesis-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/adapter_config.json +26 -0
  16. llama2/graph-text-molgen/retrosynthesis-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/adapter_model.bin +3 -0
  17. llama2/graph-text-molgen/retrosynthesis-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/config.json +35 -0
  18. llama2/graph-text-molgen/retrosynthesis-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/non_lora_trainables.bin +3 -0
  19. llama2/graph-text-molgen/retrosynthesis-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/trainer_state.json +0 -0
  20. llama2/llava-hvqvae2-llama-2-7b-chat-pretrain/config.json +35 -0
  21. llama2/llava-hvqvae2-llama-2-7b-chat-pretrain/mm_projector.bin +3 -0
  22. llama2/llava-hvqvae2-llama-2-7b-chat-pretrain/trainer_state.json +0 -0
  23. llama2/molcap-llava-hvqvae2-llama-2-7b-chat-finetune_lora-50ep/README.md +9 -0
  24. llama2/molcap-llava-hvqvae2-llama-2-7b-chat-finetune_lora-50ep/adapter_config.json +26 -0
  25. llama2/molcap-llava-hvqvae2-llama-2-7b-chat-finetune_lora-50ep/adapter_model.bin +3 -0
  26. llama2/molcap-llava-hvqvae2-llama-2-7b-chat-finetune_lora-50ep/config.json +35 -0
  27. llama2/molcap-llava-hvqvae2-llama-2-7b-chat-finetune_lora-50ep/non_lora_trainables.bin +3 -0
  28. llama2/molcap-llava-hvqvae2-llama-2-7b-chat-finetune_lora-50ep/trainer_state.json +0 -0
  29. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_clintox/README.md +9 -0
  30. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_clintox/adapter_config.json +26 -0
  31. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_clintox/adapter_model.bin +3 -0
  32. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_clintox/config.json +36 -0
  33. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_clintox/non_lora_trainables.bin +3 -0
  34. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_clintox/trainer_state.json +2308 -0
  35. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_cyp450/README.md +9 -0
  36. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_cyp450/adapter_config.json +26 -0
  37. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_cyp450/config.json +36 -0
  38. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_cyp450/trainer_state.json +0 -0
  39. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_muv/README.md +9 -0
  40. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_muv/adapter_config.json +26 -0
  41. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_muv/adapter_model.bin +3 -0
  42. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_muv/config.json +36 -0
  43. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_muv/non_lora_trainables.bin +3 -0
  44. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_muv/trainer_state.json +0 -0
  45. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_sider/README.md +9 -0
  46. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_sider/adapter_config.json +26 -0
  47. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_sider/adapter_model.bin +3 -0
  48. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_sider/config.json +36 -0
  49. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_sider/non_lora_trainables.bin +3 -0
  50. vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_sider/trainer_state.json +0 -0
hvqvae.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d99e41195c50d911a00328a49192d5b8cdd2a0bd203f38ed05f931cb0c2996b4
3
+ size 7478074
llama2/graph-text-molgen/forward_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+
9
+ - PEFT 0.5.0
llama2/graph-text-molgen/forward_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "llama-2-7b-chat",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 16,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 64,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "gate_proj",
18
+ "k_proj",
19
+ "down_proj",
20
+ "v_proj",
21
+ "o_proj",
22
+ "up_proj",
23
+ "q_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
llama2/graph-text-molgen/forward_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce9e1a1a7c7ac0b957b748681edae23fac240bc27db412ae52415d78423b66a3
3
+ size 319970957
llama2/graph-text-molgen/forward_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "llama-2-7b-chat",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": false,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "mm_graph_tower": "hvqvae2",
15
+ "mm_hidden_size": 308,
16
+ "mm_projector_type": "hlinear",
17
+ "mm_use_im_patch_token": false,
18
+ "mm_use_im_start_end": false,
19
+ "model_type": "llava_graph",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 32,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": null,
26
+ "rope_theta": 10000.0,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "float16",
29
+ "transformers_version": "4.33.2",
30
+ "tune_mm_mlp_adapter": false,
31
+ "use_cache": true,
32
+ "use_lap_pe": true,
33
+ "use_mm_proj": true,
34
+ "vocab_size": 32000
35
+ }
llama2/graph-text-molgen/forward_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:977e67e9cdde408a93d6da8182eb17bdb25a2f9a20452fee352a908b725ca113
3
+ size 11335231
llama2/graph-text-molgen/forward_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
llama2/graph-text-molgen/reagent_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+
9
+ - PEFT 0.5.0
llama2/graph-text-molgen/reagent_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "llama-2-7b-chat",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 16,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 64,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "gate_proj",
18
+ "k_proj",
19
+ "o_proj",
20
+ "v_proj",
21
+ "down_proj",
22
+ "up_proj",
23
+ "q_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
llama2/graph-text-molgen/reagent_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83e6b19a80fa1ec1f7728219cd86316b9d65b11edcd92c462d2eb11b75eae856
3
+ size 319970957
llama2/graph-text-molgen/reagent_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "llama-2-7b-chat",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": false,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "mm_graph_tower": "hvqvae2",
15
+ "mm_hidden_size": 308,
16
+ "mm_projector_type": "hlinear",
17
+ "mm_use_im_patch_token": false,
18
+ "mm_use_im_start_end": false,
19
+ "model_type": "llava_graph",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 32,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": null,
26
+ "rope_theta": 10000.0,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "float16",
29
+ "transformers_version": "4.33.2",
30
+ "tune_mm_mlp_adapter": false,
31
+ "use_cache": true,
32
+ "use_lap_pe": true,
33
+ "use_mm_proj": true,
34
+ "vocab_size": 32000
35
+ }
llama2/graph-text-molgen/reagent_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6f533fb28b1a0dcbf3b5b8b3e9a5f60053ab3c61849cc11d2e92937e9b99e41
3
+ size 11335231
llama2/graph-text-molgen/reagent_pred-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
llama2/graph-text-molgen/retrosynthesis-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+
9
+ - PEFT 0.5.0
llama2/graph-text-molgen/retrosynthesis-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "llama-2-7b-chat",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 16,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 64,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "v_proj",
18
+ "o_proj",
19
+ "k_proj",
20
+ "up_proj",
21
+ "q_proj",
22
+ "down_proj",
23
+ "gate_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
llama2/graph-text-molgen/retrosynthesis-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb9b722d5cdef8ec5c5bd99953017d2df5bccf4a98c451db8aa148afd1dca572
3
+ size 319970957
llama2/graph-text-molgen/retrosynthesis-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "llama-2-7b-chat",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": false,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "mm_graph_tower": "hvqvae2",
15
+ "mm_hidden_size": 308,
16
+ "mm_projector_type": "hlinear",
17
+ "mm_use_im_patch_token": false,
18
+ "mm_use_im_start_end": false,
19
+ "model_type": "llava_graph",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 32,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": null,
26
+ "rope_theta": 10000.0,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "float16",
29
+ "transformers_version": "4.33.2",
30
+ "tune_mm_mlp_adapter": false,
31
+ "use_cache": true,
32
+ "use_lap_pe": true,
33
+ "use_mm_proj": true,
34
+ "vocab_size": 32000
35
+ }
llama2/graph-text-molgen/retrosynthesis-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8dad9674828b2165c4753e24fb36bcdd7e4e7f8d04a4254fddb701cda91c7cee
3
+ size 11335231
llama2/graph-text-molgen/retrosynthesis-llava-hvqvae2-llama-2-7b-chat-finetune_lora-5ep16bz/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
llama2/llava-hvqvae2-llama-2-7b-chat-pretrain/config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "llama-2-7b-chat",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": false,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "mm_graph_tower": "hvqvae2",
15
+ "mm_hidden_size": 308,
16
+ "mm_projector_type": "hlinear",
17
+ "mm_use_im_patch_token": false,
18
+ "mm_use_im_start_end": false,
19
+ "model_type": "llava_graph",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 32,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": null,
26
+ "rope_theta": 10000.0,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "float16",
29
+ "transformers_version": "4.33.2",
30
+ "tune_mm_mlp_adapter": true,
31
+ "use_cache": true,
32
+ "use_lap_pe": true,
33
+ "use_mm_proj": true,
34
+ "vocab_size": 32000
35
+ }
llama2/llava-hvqvae2-llama-2-7b-chat-pretrain/mm_projector.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca86cf37d5c3ff431e9960c06d57876b68a5d3264ffe028a0b244a63cc3aac9b
3
+ size 7596223
llama2/llava-hvqvae2-llama-2-7b-chat-pretrain/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
llama2/molcap-llava-hvqvae2-llama-2-7b-chat-finetune_lora-50ep/README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+
9
+ - PEFT 0.5.0
llama2/molcap-llava-hvqvae2-llama-2-7b-chat-finetune_lora-50ep/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "llama-2-7b-chat",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 16,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 64,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "gate_proj",
18
+ "q_proj",
19
+ "o_proj",
20
+ "up_proj",
21
+ "k_proj",
22
+ "v_proj",
23
+ "down_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
llama2/molcap-llava-hvqvae2-llama-2-7b-chat-finetune_lora-50ep/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a4156fa46026e3b6db7e344c7c8e0c71269dab1e050f4e058c042028001305a
3
+ size 319970957
llama2/molcap-llava-hvqvae2-llama-2-7b-chat-finetune_lora-50ep/config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "llama-2-7b-chat",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": false,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 4096,
14
+ "mm_graph_tower": "hvqvae2",
15
+ "mm_hidden_size": 308,
16
+ "mm_projector_type": "hlinear",
17
+ "mm_use_im_patch_token": false,
18
+ "mm_use_im_start_end": false,
19
+ "model_type": "llava_graph",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 32,
23
+ "pretraining_tp": 1,
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_scaling": null,
26
+ "rope_theta": 10000.0,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "float16",
29
+ "transformers_version": "4.33.2",
30
+ "tune_mm_mlp_adapter": false,
31
+ "use_cache": true,
32
+ "use_lap_pe": true,
33
+ "use_mm_proj": true,
34
+ "vocab_size": 32000
35
+ }
llama2/molcap-llava-hvqvae2-llama-2-7b-chat-finetune_lora-50ep/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce7a0b85f149002efc83f1e353479a2eb8b0c0ddbcab68b294b9cfccfc687de1
3
+ size 11335231
llama2/molcap-llava-hvqvae2-llama-2-7b-chat-finetune_lora-50ep/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_clintox/README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+
9
+ - PEFT 0.5.0
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_clintox/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "./vicuna-v1-3-7b",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 256,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 128,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "gate_proj",
18
+ "v_proj",
19
+ "q_proj",
20
+ "down_proj",
21
+ "k_proj",
22
+ "o_proj",
23
+ "up_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_clintox/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ff93670b4d42680a8515ee55572fee64ff0286dd15b9d0b172dfe5b1078f2e2
3
+ size 639786637
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_clintox/config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./vicuna-v1-3-7b",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": false,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 2048,
14
+ "mm_graph_tower": "hvqvae2",
15
+ "mm_hidden_size": 308,
16
+ "mm_projector_type": "hlinear",
17
+ "mm_use_im_patch_token": false,
18
+ "mm_use_im_start_end": false,
19
+ "model_type": "llava_graph",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 32,
23
+ "pad_token_id": 0,
24
+ "pretraining_tp": 1,
25
+ "rms_norm_eps": 1e-06,
26
+ "rope_scaling": null,
27
+ "rope_theta": 10000.0,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "float16",
30
+ "transformers_version": "4.33.2",
31
+ "tune_mm_mlp_adapter": false,
32
+ "use_cache": true,
33
+ "use_lap_pe": true,
34
+ "use_mm_proj": true,
35
+ "vocab_size": 32000
36
+ }
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_clintox/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48c804016822b1fcbeb5fdf1dcac9b404ab1763cae8255f273536ac9d72cbd1b
3
+ size 11335231
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_clintox/trainer_state.json ADDED
@@ -0,0 +1,2308 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 20.0,
5
+ "eval_steps": 500,
6
+ "global_step": 380,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.05,
13
+ "learning_rate": 3.3333333333333333e-06,
14
+ "loss": 6.5781,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.11,
19
+ "learning_rate": 6.666666666666667e-06,
20
+ "loss": 6.5469,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.16,
25
+ "learning_rate": 1e-05,
26
+ "loss": 6.6484,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.21,
31
+ "learning_rate": 1.3333333333333333e-05,
32
+ "loss": 6.0312,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.26,
37
+ "learning_rate": 1.6666666666666667e-05,
38
+ "loss": 5.1328,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.32,
43
+ "learning_rate": 2e-05,
44
+ "loss": 3.6328,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.37,
49
+ "learning_rate": 2.3333333333333336e-05,
50
+ "loss": 2.4062,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.42,
55
+ "learning_rate": 2.6666666666666667e-05,
56
+ "loss": 1.5195,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.47,
61
+ "learning_rate": 3.0000000000000004e-05,
62
+ "loss": 0.9883,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.53,
67
+ "learning_rate": 3.3333333333333335e-05,
68
+ "loss": 0.6602,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.58,
73
+ "learning_rate": 3.6666666666666666e-05,
74
+ "loss": 0.5137,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.63,
79
+ "learning_rate": 4e-05,
80
+ "loss": 0.3823,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.68,
85
+ "learning_rate": 3.9999271211568084e-05,
86
+ "loss": 0.2935,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.74,
91
+ "learning_rate": 3.999708489938559e-05,
92
+ "loss": 0.1488,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.79,
97
+ "learning_rate": 3.99934412227884e-05,
98
+ "loss": 0.2485,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.84,
103
+ "learning_rate": 3.998834044732348e-05,
104
+ "loss": 0.1338,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.89,
109
+ "learning_rate": 3.998178294472944e-05,
110
+ "loss": 0.1754,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.95,
115
+ "learning_rate": 3.997376919290946e-05,
116
+ "loss": 0.1593,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 1.0,
121
+ "learning_rate": 3.996429977589653e-05,
122
+ "loss": 0.1721,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 1.05,
127
+ "learning_rate": 3.995337538381079e-05,
128
+ "loss": 0.1564,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 1.11,
133
+ "learning_rate": 3.99409968128093e-05,
134
+ "loss": 0.1659,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 1.16,
139
+ "learning_rate": 3.9927164965028006e-05,
140
+ "loss": 0.1531,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 1.21,
145
+ "learning_rate": 3.991188084851596e-05,
146
+ "loss": 0.1584,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 1.26,
151
+ "learning_rate": 3.98951455771619e-05,
152
+ "loss": 0.1647,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 1.32,
157
+ "learning_rate": 3.987696037061304e-05,
158
+ "loss": 0.1562,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 1.37,
163
+ "learning_rate": 3.98573265541862e-05,
164
+ "loss": 0.1322,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 1.42,
169
+ "learning_rate": 3.98362455587712e-05,
170
+ "loss": 0.1619,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 1.47,
175
+ "learning_rate": 3.981371892072661e-05,
176
+ "loss": 0.1064,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 1.53,
181
+ "learning_rate": 3.9789748281767754e-05,
182
+ "loss": 0.1302,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 1.58,
187
+ "learning_rate": 3.976433538884706e-05,
188
+ "loss": 0.1328,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 1.63,
193
+ "learning_rate": 3.9737482094026764e-05,
194
+ "loss": 0.1242,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 1.68,
199
+ "learning_rate": 3.9709190354343936e-05,
200
+ "loss": 0.2114,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 1.74,
205
+ "learning_rate": 3.967946223166784e-05,
206
+ "loss": 0.1575,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 1.79,
211
+ "learning_rate": 3.9648299892549654e-05,
212
+ "loss": 0.082,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 1.84,
217
+ "learning_rate": 3.961570560806461e-05,
218
+ "loss": 0.1068,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 1.89,
223
+ "learning_rate": 3.958168175364646e-05,
224
+ "loss": 0.0997,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 1.95,
229
+ "learning_rate": 3.954623080891435e-05,
230
+ "loss": 0.1587,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 2.0,
235
+ "learning_rate": 3.950935535749213e-05,
236
+ "loss": 0.0936,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 2.05,
241
+ "learning_rate": 3.9471058086820024e-05,
242
+ "loss": 0.14,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 2.11,
247
+ "learning_rate": 3.943134178795883e-05,
248
+ "loss": 0.14,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 2.16,
253
+ "learning_rate": 3.939020935538647e-05,
254
+ "loss": 0.1548,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 2.21,
259
+ "learning_rate": 3.934766378678704e-05,
260
+ "loss": 0.1184,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 2.26,
265
+ "learning_rate": 3.930370818283235e-05,
266
+ "loss": 0.1104,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 2.32,
271
+ "learning_rate": 3.925834574695599e-05,
272
+ "loss": 0.1354,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 2.37,
277
+ "learning_rate": 3.9211579785119804e-05,
278
+ "loss": 0.108,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 2.42,
283
+ "learning_rate": 3.9163413705572984e-05,
284
+ "loss": 0.0513,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 2.47,
289
+ "learning_rate": 3.911385101860369e-05,
290
+ "loss": 0.1129,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 2.53,
295
+ "learning_rate": 3.906289533628322e-05,
296
+ "loss": 0.1,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 2.58,
301
+ "learning_rate": 3.9010550372202756e-05,
302
+ "loss": 0.1213,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 2.63,
307
+ "learning_rate": 3.895681994120272e-05,
308
+ "loss": 0.1859,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 2.68,
313
+ "learning_rate": 3.890170795909477e-05,
314
+ "loss": 0.1483,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 2.74,
319
+ "learning_rate": 3.8845218442376416e-05,
320
+ "loss": 0.0887,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 2.79,
325
+ "learning_rate": 3.878735550793827e-05,
326
+ "loss": 0.13,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 2.84,
331
+ "learning_rate": 3.8728123372764085e-05,
332
+ "loss": 0.1549,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 2.89,
337
+ "learning_rate": 3.8667526353623326e-05,
338
+ "loss": 0.1699,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 2.95,
343
+ "learning_rate": 3.8605568866756666e-05,
344
+ "loss": 0.1741,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 3.0,
349
+ "learning_rate": 3.8542255427554065e-05,
350
+ "loss": 0.1244,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 3.05,
355
+ "learning_rate": 3.8477590650225735e-05,
356
+ "loss": 0.11,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 3.11,
361
+ "learning_rate": 3.8411579247465845e-05,
362
+ "loss": 0.1753,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 3.16,
367
+ "learning_rate": 3.834422603010906e-05,
368
+ "loss": 0.1378,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 3.21,
373
+ "learning_rate": 3.827553590677996e-05,
374
+ "loss": 0.1133,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 3.26,
379
+ "learning_rate": 3.820551388353525e-05,
380
+ "loss": 0.14,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 3.32,
385
+ "learning_rate": 3.813416506349899e-05,
386
+ "loss": 0.1765,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 3.37,
391
+ "learning_rate": 3.806149464649066e-05,
392
+ "loss": 0.1208,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 3.42,
397
+ "learning_rate": 3.798750792864617e-05,
398
+ "loss": 0.1493,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 3.47,
403
+ "learning_rate": 3.791221030203193e-05,
404
+ "loss": 0.1252,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 3.53,
409
+ "learning_rate": 3.783560725425188e-05,
410
+ "loss": 0.1162,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 3.58,
415
+ "learning_rate": 3.775770436804751e-05,
416
+ "loss": 0.1919,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 3.63,
421
+ "learning_rate": 3.767850732089105e-05,
422
+ "loss": 0.0798,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 3.68,
427
+ "learning_rate": 3.759802188457168e-05,
428
+ "loss": 0.1332,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 3.74,
433
+ "learning_rate": 3.75162539247749e-05,
434
+ "loss": 0.0937,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 3.79,
439
+ "learning_rate": 3.743320940065503e-05,
440
+ "loss": 0.1108,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 3.84,
445
+ "learning_rate": 3.7348894364400914e-05,
446
+ "loss": 0.116,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 3.89,
451
+ "learning_rate": 3.726331496079486e-05,
452
+ "loss": 0.0609,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 3.95,
457
+ "learning_rate": 3.71764774267648e-05,
458
+ "loss": 0.1792,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 4.0,
463
+ "learning_rate": 3.7088388090929776e-05,
464
+ "loss": 0.0847,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 4.05,
469
+ "learning_rate": 3.699905337313866e-05,
470
+ "loss": 0.153,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 4.11,
475
+ "learning_rate": 3.690847978400236e-05,
476
+ "loss": 0.1088,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 4.16,
481
+ "learning_rate": 3.681667392441926e-05,
482
+ "loss": 0.1165,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 4.21,
487
+ "learning_rate": 3.672364248509422e-05,
488
+ "loss": 0.1244,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 4.26,
493
+ "learning_rate": 3.662939224605091e-05,
494
+ "loss": 0.1249,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 4.32,
499
+ "learning_rate": 3.653393007613771e-05,
500
+ "loss": 0.1248,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 4.37,
505
+ "learning_rate": 3.643726293252717e-05,
506
+ "loss": 0.0751,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 4.42,
511
+ "learning_rate": 3.633939786020884e-05,
512
+ "loss": 0.123,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 4.47,
517
+ "learning_rate": 3.624034199147602e-05,
518
+ "loss": 0.1466,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 4.53,
523
+ "learning_rate": 3.614010254540581e-05,
524
+ "loss": 0.1448,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 4.58,
529
+ "learning_rate": 3.60386868273331e-05,
530
+ "loss": 0.1605,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 4.63,
535
+ "learning_rate": 3.593610222831809e-05,
536
+ "loss": 0.1544,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 4.68,
541
+ "learning_rate": 3.58323562246077e-05,
542
+ "loss": 0.0949,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 4.74,
547
+ "learning_rate": 3.572745637709065e-05,
548
+ "loss": 0.1155,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 4.79,
553
+ "learning_rate": 3.562141033074649e-05,
554
+ "loss": 0.1235,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 4.84,
559
+ "learning_rate": 3.55142258140884e-05,
560
+ "loss": 0.1772,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 4.89,
565
+ "learning_rate": 3.540591063859996e-05,
566
+ "loss": 0.1523,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 4.95,
571
+ "learning_rate": 3.5296472698165856e-05,
572
+ "loss": 0.126,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 5.0,
577
+ "learning_rate": 3.51859199684966e-05,
578
+ "loss": 0.1054,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 5.05,
583
+ "learning_rate": 3.5074260506547225e-05,
584
+ "loss": 0.1022,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 5.11,
589
+ "learning_rate": 3.4961502449930165e-05,
590
+ "loss": 0.1858,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 5.16,
595
+ "learning_rate": 3.484765401632214e-05,
596
+ "loss": 0.1566,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 5.21,
601
+ "learning_rate": 3.473272350286529e-05,
602
+ "loss": 0.1021,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 5.26,
607
+ "learning_rate": 3.461671928556248e-05,
608
+ "loss": 0.0933,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 5.32,
613
+ "learning_rate": 3.449964981866689e-05,
614
+ "loss": 0.1385,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 5.37,
619
+ "learning_rate": 3.438152363406582e-05,
620
+ "loss": 0.1249,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 5.42,
625
+ "learning_rate": 3.426234934065896e-05,
626
+ "loss": 0.1295,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 5.47,
631
+ "learning_rate": 3.4142135623730954e-05,
632
+ "loss": 0.1067,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 5.53,
637
+ "learning_rate": 3.402089124431843e-05,
638
+ "loss": 0.1349,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 5.58,
643
+ "learning_rate": 3.38986250385715e-05,
644
+ "loss": 0.1412,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 5.63,
649
+ "learning_rate": 3.37753459171098e-05,
650
+ "loss": 0.0981,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 5.68,
655
+ "learning_rate": 3.365106286437309e-05,
656
+ "loss": 0.0834,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 5.74,
661
+ "learning_rate": 3.3525784937966474e-05,
662
+ "loss": 0.1453,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 5.79,
667
+ "learning_rate": 3.339952126800033e-05,
668
+ "loss": 0.1552,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 5.84,
673
+ "learning_rate": 3.3272281056424854e-05,
674
+ "loss": 0.0876,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 5.89,
679
+ "learning_rate": 3.3144073576359455e-05,
680
+ "loss": 0.151,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 5.95,
685
+ "learning_rate": 3.301490817141698e-05,
686
+ "loss": 0.1343,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 6.0,
691
+ "learning_rate": 3.288479425502273e-05,
692
+ "loss": 0.1047,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 6.05,
697
+ "learning_rate": 3.27537413097284e-05,
698
+ "loss": 0.1417,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 6.11,
703
+ "learning_rate": 3.262175888652106e-05,
704
+ "loss": 0.0889,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 6.16,
709
+ "learning_rate": 3.248885660412701e-05,
710
+ "loss": 0.0912,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 6.21,
715
+ "learning_rate": 3.235504414831087e-05,
716
+ "loss": 0.095,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 6.26,
721
+ "learning_rate": 3.2220331271169614e-05,
722
+ "loss": 0.1486,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 6.32,
727
+ "learning_rate": 3.2084727790421895e-05,
728
+ "loss": 0.1378,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 6.37,
733
+ "learning_rate": 3.194824358869252e-05,
734
+ "loss": 0.1383,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 6.42,
739
+ "learning_rate": 3.181088861279222e-05,
740
+ "loss": 0.1015,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 6.47,
745
+ "learning_rate": 3.1672672872992755e-05,
746
+ "loss": 0.1249,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 6.53,
751
+ "learning_rate": 3.153360644229735e-05,
752
+ "loss": 0.1289,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 6.58,
757
+ "learning_rate": 3.139369945570659e-05,
758
+ "loss": 0.1287,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 6.63,
763
+ "learning_rate": 3.125296210947983e-05,
764
+ "loss": 0.1008,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 6.68,
769
+ "learning_rate": 3.111140466039205e-05,
770
+ "loss": 0.1459,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 6.74,
775
+ "learning_rate": 3.0969037424986376e-05,
776
+ "loss": 0.146,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 6.79,
781
+ "learning_rate": 3.082587077882225e-05,
782
+ "loss": 0.1721,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 6.84,
787
+ "learning_rate": 3.068191515571921e-05,
788
+ "loss": 0.1113,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 6.89,
793
+ "learning_rate": 3.053718104699654e-05,
794
+ "loss": 0.1014,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 6.95,
799
+ "learning_rate": 3.0391679000708673e-05,
800
+ "loss": 0.106,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 7.0,
805
+ "learning_rate": 3.024541962087641e-05,
806
+ "loss": 0.1711,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 7.05,
811
+ "learning_rate": 3.0098413566714165e-05,
812
+ "loss": 0.0898,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 7.11,
817
+ "learning_rate": 2.9950671551853094e-05,
818
+ "loss": 0.0875,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 7.16,
823
+ "learning_rate": 2.980220434356035e-05,
824
+ "loss": 0.126,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 7.21,
829
+ "learning_rate": 2.965302276195431e-05,
830
+ "loss": 0.1261,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 7.26,
835
+ "learning_rate": 2.9503137679216073e-05,
836
+ "loss": 0.114,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 7.32,
841
+ "learning_rate": 2.935256001879709e-05,
842
+ "loss": 0.1384,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 7.37,
847
+ "learning_rate": 2.9201300754623046e-05,
848
+ "loss": 0.1226,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 7.42,
853
+ "learning_rate": 2.9049370910294143e-05,
854
+ "loss": 0.1263,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 7.47,
859
+ "learning_rate": 2.8896781558281688e-05,
860
+ "loss": 0.1452,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 7.53,
865
+ "learning_rate": 2.8743543819121132e-05,
866
+ "loss": 0.1198,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 7.58,
871
+ "learning_rate": 2.8589668860601643e-05,
872
+ "loss": 0.1314,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 7.63,
877
+ "learning_rate": 2.843516789695219e-05,
878
+ "loss": 0.1091,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 7.68,
883
+ "learning_rate": 2.828005218802427e-05,
884
+ "loss": 0.1127,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 7.74,
889
+ "learning_rate": 2.812433303847133e-05,
890
+ "loss": 0.1125,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 7.79,
895
+ "learning_rate": 2.7968021796924834e-05,
896
+ "loss": 0.1816,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 7.84,
901
+ "learning_rate": 2.781112985516725e-05,
902
+ "loss": 0.1317,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 7.89,
907
+ "learning_rate": 2.7653668647301797e-05,
908
+ "loss": 0.0975,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 7.95,
913
+ "learning_rate": 2.7495649648919153e-05,
914
+ "loss": 0.1036,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 8.0,
919
+ "learning_rate": 2.7337084376261135e-05,
920
+ "loss": 0.0846,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 8.05,
925
+ "learning_rate": 2.7177984385381366e-05,
926
+ "loss": 0.1436,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 8.11,
931
+ "learning_rate": 2.701836127130314e-05,
932
+ "loss": 0.0847,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 8.16,
937
+ "learning_rate": 2.6858226667174362e-05,
938
+ "loss": 0.0792,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 8.21,
943
+ "learning_rate": 2.6697592243419723e-05,
944
+ "loss": 0.1567,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 8.26,
949
+ "learning_rate": 2.6536469706890226e-05,
950
+ "loss": 0.1548,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 8.32,
955
+ "learning_rate": 2.637487080000992e-05,
956
+ "loss": 0.1852,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 8.37,
961
+ "learning_rate": 2.6212807299920218e-05,
962
+ "loss": 0.1085,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 8.42,
967
+ "learning_rate": 2.605029101762152e-05,
968
+ "loss": 0.1364,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 8.47,
973
+ "learning_rate": 2.588733379711248e-05,
974
+ "loss": 0.1144,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 8.53,
979
+ "learning_rate": 2.572394751452683e-05,
980
+ "loss": 0.1056,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 8.58,
985
+ "learning_rate": 2.5560144077267826e-05,
986
+ "loss": 0.1411,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 8.63,
991
+ "learning_rate": 2.5395935423140487e-05,
992
+ "loss": 0.1246,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 8.68,
997
+ "learning_rate": 2.5231333519481577e-05,
998
+ "loss": 0.1379,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 8.74,
1003
+ "learning_rate": 2.5066350362287407e-05,
1004
+ "loss": 0.1045,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 8.79,
1009
+ "learning_rate": 2.490099797533964e-05,
1010
+ "loss": 0.1032,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 8.84,
1015
+ "learning_rate": 2.4735288409328937e-05,
1016
+ "loss": 0.0997,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 8.89,
1021
+ "learning_rate": 2.456923374097678e-05,
1022
+ "loss": 0.0868,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 8.95,
1027
+ "learning_rate": 2.4402846072155313e-05,
1028
+ "loss": 0.0928,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 9.0,
1033
+ "learning_rate": 2.4236137529005355e-05,
1034
+ "loss": 0.1117,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 9.05,
1039
+ "learning_rate": 2.4069120261052682e-05,
1040
+ "loss": 0.1288,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 9.11,
1045
+ "learning_rate": 2.390180644032257e-05,
1046
+ "loss": 0.1489,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 9.16,
1051
+ "learning_rate": 2.3734208260452727e-05,
1052
+ "loss": 0.1038,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 9.21,
1057
+ "learning_rate": 2.356633793580463e-05,
1058
+ "loss": 0.1051,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 9.26,
1063
+ "learning_rate": 2.3398207700573336e-05,
1064
+ "loss": 0.1711,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 9.32,
1069
+ "learning_rate": 2.3229829807895904e-05,
1070
+ "loss": 0.0945,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 9.37,
1075
+ "learning_rate": 2.306121652895836e-05,
1076
+ "loss": 0.1277,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 9.42,
1081
+ "learning_rate": 2.289238015210142e-05,
1082
+ "loss": 0.1415,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 9.47,
1087
+ "learning_rate": 2.2723332981924937e-05,
1088
+ "loss": 0.0664,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 9.53,
1093
+ "learning_rate": 2.2554087338391098e-05,
1094
+ "loss": 0.1089,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 9.58,
1099
+ "learning_rate": 2.2384655555926625e-05,
1100
+ "loss": 0.1195,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 9.63,
1105
+ "learning_rate": 2.2215049982523827e-05,
1106
+ "loss": 0.0781,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 9.68,
1111
+ "learning_rate": 2.2045282978840684e-05,
1112
+ "loss": 0.1266,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 9.74,
1117
+ "learning_rate": 2.1875366917300057e-05,
1118
+ "loss": 0.155,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 9.79,
1123
+ "learning_rate": 2.1705314181187922e-05,
1124
+ "loss": 0.1202,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 9.84,
1129
+ "learning_rate": 2.153513716375099e-05,
1130
+ "loss": 0.1676,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 9.89,
1135
+ "learning_rate": 2.1364848267293424e-05,
1136
+ "loss": 0.0894,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 9.95,
1141
+ "learning_rate": 2.1194459902272997e-05,
1142
+ "loss": 0.1196,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 10.0,
1147
+ "learning_rate": 2.102398448639667e-05,
1148
+ "loss": 0.0975,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 10.05,
1153
+ "learning_rate": 2.085343444371551e-05,
1154
+ "loss": 0.1364,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 10.11,
1159
+ "learning_rate": 2.068282220371936e-05,
1160
+ "loss": 0.108,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 10.16,
1165
+ "learning_rate": 2.0512160200430896e-05,
1166
+ "loss": 0.0727,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 10.21,
1171
+ "learning_rate": 2.03414608714995e-05,
1172
+ "loss": 0.1112,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 10.26,
1177
+ "learning_rate": 2.017073665729479e-05,
1178
+ "loss": 0.135,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 10.32,
1183
+ "learning_rate": 2e-05,
1184
+ "loss": 0.1162,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 10.37,
1189
+ "learning_rate": 1.982926334270522e-05,
1190
+ "loss": 0.1771,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 10.42,
1195
+ "learning_rate": 1.9658539128500507e-05,
1196
+ "loss": 0.0685,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 10.47,
1201
+ "learning_rate": 1.948783979956911e-05,
1202
+ "loss": 0.1078,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 10.53,
1207
+ "learning_rate": 1.9317177796280643e-05,
1208
+ "loss": 0.1307,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 10.58,
1213
+ "learning_rate": 1.9146565556284492e-05,
1214
+ "loss": 0.113,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 10.63,
1219
+ "learning_rate": 1.8976015513603344e-05,
1220
+ "loss": 0.0933,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 10.68,
1225
+ "learning_rate": 1.8805540097727003e-05,
1226
+ "loss": 0.1012,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 10.74,
1231
+ "learning_rate": 1.8635151732706586e-05,
1232
+ "loss": 0.1204,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 10.79,
1237
+ "learning_rate": 1.8464862836249014e-05,
1238
+ "loss": 0.1306,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 10.84,
1243
+ "learning_rate": 1.829468581881208e-05,
1244
+ "loss": 0.1296,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 10.89,
1249
+ "learning_rate": 1.8124633082699956e-05,
1250
+ "loss": 0.1087,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 10.95,
1255
+ "learning_rate": 1.7954717021159316e-05,
1256
+ "loss": 0.1519,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 11.0,
1261
+ "learning_rate": 1.778495001747618e-05,
1262
+ "loss": 0.1353,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 11.05,
1267
+ "learning_rate": 1.7615344444073385e-05,
1268
+ "loss": 0.1101,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 11.11,
1273
+ "learning_rate": 1.7445912661608912e-05,
1274
+ "loss": 0.1388,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 11.16,
1279
+ "learning_rate": 1.7276667018075073e-05,
1280
+ "loss": 0.1658,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 11.21,
1285
+ "learning_rate": 1.710761984789858e-05,
1286
+ "loss": 0.1342,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 11.26,
1291
+ "learning_rate": 1.6938783471041647e-05,
1292
+ "loss": 0.1012,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 11.32,
1297
+ "learning_rate": 1.6770170192104107e-05,
1298
+ "loss": 0.149,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 11.37,
1303
+ "learning_rate": 1.6601792299426668e-05,
1304
+ "loss": 0.1259,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 11.42,
1309
+ "learning_rate": 1.6433662064195378e-05,
1310
+ "loss": 0.093,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 11.47,
1315
+ "learning_rate": 1.6265791739547276e-05,
1316
+ "loss": 0.123,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 11.53,
1321
+ "learning_rate": 1.609819355967744e-05,
1322
+ "loss": 0.1042,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 11.58,
1327
+ "learning_rate": 1.5930879738947328e-05,
1328
+ "loss": 0.0735,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 11.63,
1333
+ "learning_rate": 1.576386247099465e-05,
1334
+ "loss": 0.0945,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 11.68,
1339
+ "learning_rate": 1.5597153927844693e-05,
1340
+ "loss": 0.0979,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 11.74,
1345
+ "learning_rate": 1.543076625902322e-05,
1346
+ "loss": 0.1059,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 11.79,
1351
+ "learning_rate": 1.5264711590671067e-05,
1352
+ "loss": 0.1222,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 11.84,
1357
+ "learning_rate": 1.5099002024660368e-05,
1358
+ "loss": 0.0948,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 11.89,
1363
+ "learning_rate": 1.4933649637712593e-05,
1364
+ "loss": 0.1166,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 11.95,
1369
+ "learning_rate": 1.4768666480518432e-05,
1370
+ "loss": 0.1295,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 12.0,
1375
+ "learning_rate": 1.4604064576859513e-05,
1376
+ "loss": 0.0759,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 12.05,
1381
+ "learning_rate": 1.4439855922732182e-05,
1382
+ "loss": 0.1631,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 12.11,
1387
+ "learning_rate": 1.4276052485473177e-05,
1388
+ "loss": 0.1216,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 12.16,
1393
+ "learning_rate": 1.4112666202887522e-05,
1394
+ "loss": 0.1101,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 12.21,
1399
+ "learning_rate": 1.3949708982378487e-05,
1400
+ "loss": 0.0963,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 12.26,
1405
+ "learning_rate": 1.3787192700079792e-05,
1406
+ "loss": 0.1061,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 12.32,
1411
+ "learning_rate": 1.3625129199990083e-05,
1412
+ "loss": 0.1411,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 12.37,
1417
+ "learning_rate": 1.3463530293109783e-05,
1418
+ "loss": 0.0859,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 12.42,
1423
+ "learning_rate": 1.3302407756580278e-05,
1424
+ "loss": 0.0946,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 12.47,
1429
+ "learning_rate": 1.3141773332825647e-05,
1430
+ "loss": 0.077,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 12.53,
1435
+ "learning_rate": 1.2981638728696868e-05,
1436
+ "loss": 0.0906,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 12.58,
1441
+ "learning_rate": 1.282201561461864e-05,
1442
+ "loss": 0.1389,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 12.63,
1447
+ "learning_rate": 1.2662915623738874e-05,
1448
+ "loss": 0.1498,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 12.68,
1453
+ "learning_rate": 1.2504350351080845e-05,
1454
+ "loss": 0.1659,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 12.74,
1459
+ "learning_rate": 1.2346331352698206e-05,
1460
+ "loss": 0.0935,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 12.79,
1465
+ "learning_rate": 1.2188870144832758e-05,
1466
+ "loss": 0.1377,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 12.84,
1471
+ "learning_rate": 1.2031978203075172e-05,
1472
+ "loss": 0.0899,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 12.89,
1477
+ "learning_rate": 1.1875666961528679e-05,
1478
+ "loss": 0.0848,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 12.95,
1483
+ "learning_rate": 1.1719947811975732e-05,
1484
+ "loss": 0.0976,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 13.0,
1489
+ "learning_rate": 1.1564832103047818e-05,
1490
+ "loss": 0.1545,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 13.05,
1495
+ "learning_rate": 1.1410331139398365e-05,
1496
+ "loss": 0.0834,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 13.11,
1501
+ "learning_rate": 1.1256456180878867e-05,
1502
+ "loss": 0.0946,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 13.16,
1507
+ "learning_rate": 1.110321844171832e-05,
1508
+ "loss": 0.1459,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 13.21,
1513
+ "learning_rate": 1.0950629089705857e-05,
1514
+ "loss": 0.1298,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 13.26,
1519
+ "learning_rate": 1.0798699245376959e-05,
1520
+ "loss": 0.1202,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 13.32,
1525
+ "learning_rate": 1.0647439981202918e-05,
1526
+ "loss": 0.0473,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 13.37,
1531
+ "learning_rate": 1.0496862320783926e-05,
1532
+ "loss": 0.0822,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 13.42,
1537
+ "learning_rate": 1.0346977238045699e-05,
1538
+ "loss": 0.0879,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 13.47,
1543
+ "learning_rate": 1.0197795656439662e-05,
1544
+ "loss": 0.1451,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 13.53,
1549
+ "learning_rate": 1.0049328448146908e-05,
1550
+ "loss": 0.1359,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 13.58,
1555
+ "learning_rate": 9.901586433285845e-06,
1556
+ "loss": 0.1129,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 13.63,
1561
+ "learning_rate": 9.75458037912359e-06,
1562
+ "loss": 0.1344,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 13.68,
1567
+ "learning_rate": 9.608320999291333e-06,
1568
+ "loss": 0.1667,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 13.74,
1573
+ "learning_rate": 9.462818953003465e-06,
1574
+ "loss": 0.1226,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 13.79,
1579
+ "learning_rate": 9.318084844280798e-06,
1580
+ "loss": 0.1144,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 13.84,
1585
+ "learning_rate": 9.174129221177762e-06,
1586
+ "loss": 0.1069,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 13.89,
1591
+ "learning_rate": 9.030962575013622e-06,
1592
+ "loss": 0.0981,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 13.95,
1597
+ "learning_rate": 8.888595339607961e-06,
1598
+ "loss": 0.1045,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 14.0,
1603
+ "learning_rate": 8.74703789052018e-06,
1604
+ "loss": 0.0757,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 14.05,
1609
+ "learning_rate": 8.606300544293412e-06,
1610
+ "loss": 0.0715,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 14.11,
1615
+ "learning_rate": 8.466393557702659e-06,
1616
+ "loss": 0.0791,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 14.16,
1621
+ "learning_rate": 8.327327127007247e-06,
1622
+ "loss": 0.1019,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 14.21,
1627
+ "learning_rate": 8.189111387207782e-06,
1628
+ "loss": 0.0872,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 14.26,
1633
+ "learning_rate": 8.051756411307494e-06,
1634
+ "loss": 0.0925,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 14.32,
1639
+ "learning_rate": 7.915272209578112e-06,
1640
+ "loss": 0.1394,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 14.37,
1645
+ "learning_rate": 7.779668728830389e-06,
1646
+ "loss": 0.1261,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 14.42,
1651
+ "learning_rate": 7.644955851689129e-06,
1652
+ "loss": 0.1342,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 14.47,
1657
+ "learning_rate": 7.511143395872986e-06,
1658
+ "loss": 0.1777,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 14.53,
1663
+ "learning_rate": 7.37824111347895e-06,
1664
+ "loss": 0.0706,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 14.58,
1669
+ "learning_rate": 7.246258690271599e-06,
1670
+ "loss": 0.1198,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 14.63,
1675
+ "learning_rate": 7.115205744977276e-06,
1676
+ "loss": 0.1486,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 14.68,
1681
+ "learning_rate": 6.985091828583024e-06,
1682
+ "loss": 0.1417,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 14.74,
1687
+ "learning_rate": 6.855926423640549e-06,
1688
+ "loss": 0.0808,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 14.79,
1693
+ "learning_rate": 6.727718943575161e-06,
1694
+ "loss": 0.1207,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 14.84,
1699
+ "learning_rate": 6.6004787319996714e-06,
1700
+ "loss": 0.1378,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 14.89,
1705
+ "learning_rate": 6.474215062033527e-06,
1706
+ "loss": 0.0938,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 14.95,
1711
+ "learning_rate": 6.348937135626922e-06,
1712
+ "loss": 0.0977,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 15.0,
1717
+ "learning_rate": 6.224654082890207e-06,
1718
+ "loss": 0.0988,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 15.05,
1723
+ "learning_rate": 6.101374961428512e-06,
1724
+ "loss": 0.104,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 15.11,
1729
+ "learning_rate": 5.979108755681575e-06,
1730
+ "loss": 0.098,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 15.16,
1735
+ "learning_rate": 5.857864376269051e-06,
1736
+ "loss": 0.1224,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 15.21,
1741
+ "learning_rate": 5.737650659341048e-06,
1742
+ "loss": 0.1119,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 15.26,
1747
+ "learning_rate": 5.618476365934184e-06,
1748
+ "loss": 0.0853,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 15.32,
1753
+ "learning_rate": 5.500350181333121e-06,
1754
+ "loss": 0.132,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 15.37,
1759
+ "learning_rate": 5.383280714437518e-06,
1760
+ "loss": 0.097,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 15.42,
1765
+ "learning_rate": 5.267276497134715e-06,
1766
+ "loss": 0.1141,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 15.47,
1771
+ "learning_rate": 5.152345983677866e-06,
1772
+ "loss": 0.0679,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 15.53,
1777
+ "learning_rate": 5.038497550069836e-06,
1778
+ "loss": 0.1497,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 15.58,
1783
+ "learning_rate": 4.925739493452783e-06,
1784
+ "loss": 0.1241,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 15.63,
1789
+ "learning_rate": 4.814080031503407e-06,
1790
+ "loss": 0.1188,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 15.68,
1795
+ "learning_rate": 4.703527301834148e-06,
1796
+ "loss": 0.1086,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 15.74,
1801
+ "learning_rate": 4.594089361400047e-06,
1802
+ "loss": 0.0771,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 15.79,
1807
+ "learning_rate": 4.4857741859116024e-06,
1808
+ "loss": 0.0798,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 15.84,
1813
+ "learning_rate": 4.3785896692535165e-06,
1814
+ "loss": 0.1273,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 15.89,
1819
+ "learning_rate": 4.272543622909355e-06,
1820
+ "loss": 0.1525,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 15.95,
1825
+ "learning_rate": 4.167643775392305e-06,
1826
+ "loss": 0.1028,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 16.0,
1831
+ "learning_rate": 4.0638977716819105e-06,
1832
+ "loss": 0.1076,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 16.05,
1837
+ "learning_rate": 3.961313172666898e-06,
1838
+ "loss": 0.1121,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 16.11,
1843
+ "learning_rate": 3.859897454594192e-06,
1844
+ "loss": 0.1235,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 16.16,
1849
+ "learning_rate": 3.7596580085239897e-06,
1850
+ "loss": 0.0991,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 16.21,
1855
+ "learning_rate": 3.6606021397911605e-06,
1856
+ "loss": 0.0968,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 16.26,
1861
+ "learning_rate": 3.562737067472841e-06,
1862
+ "loss": 0.1037,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 16.32,
1867
+ "learning_rate": 3.466069923862283e-06,
1868
+ "loss": 0.1241,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 16.37,
1873
+ "learning_rate": 3.3706077539490933e-06,
1874
+ "loss": 0.1168,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 16.42,
1879
+ "learning_rate": 3.276357514905788e-06,
1880
+ "loss": 0.1035,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 16.47,
1885
+ "learning_rate": 3.1833260755807392e-06,
1886
+ "loss": 0.0432,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 16.53,
1891
+ "learning_rate": 3.0915202159976453e-06,
1892
+ "loss": 0.1074,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 16.58,
1897
+ "learning_rate": 3.0009466268613384e-06,
1898
+ "loss": 0.1264,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 16.63,
1903
+ "learning_rate": 2.911611909070229e-06,
1904
+ "loss": 0.123,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 16.68,
1909
+ "learning_rate": 2.8235225732352043e-06,
1910
+ "loss": 0.1694,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 16.74,
1915
+ "learning_rate": 2.7366850392051468e-06,
1916
+ "loss": 0.113,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 16.79,
1921
+ "learning_rate": 2.651105635599094e-06,
1922
+ "loss": 0.0794,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 16.84,
1927
+ "learning_rate": 2.566790599344973e-06,
1928
+ "loss": 0.1141,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 16.89,
1933
+ "learning_rate": 2.4837460752251e-06,
1934
+ "loss": 0.1049,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 16.95,
1939
+ "learning_rate": 2.401978115428325e-06,
1940
+ "loss": 0.0822,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 17.0,
1945
+ "learning_rate": 2.3214926791089563e-06,
1946
+ "loss": 0.0925,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 17.05,
1951
+ "learning_rate": 2.242295631952496e-06,
1952
+ "loss": 0.1565,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 17.11,
1957
+ "learning_rate": 2.164392745748125e-06,
1958
+ "loss": 0.0919,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 17.16,
1963
+ "learning_rate": 2.0877896979680654e-06,
1964
+ "loss": 0.0696,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 17.21,
1969
+ "learning_rate": 2.0124920713538378e-06,
1970
+ "loss": 0.1249,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 17.26,
1975
+ "learning_rate": 1.9385053535093455e-06,
1976
+ "loss": 0.0936,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 17.32,
1981
+ "learning_rate": 1.865834936501012e-06,
1982
+ "loss": 0.1407,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 17.37,
1987
+ "learning_rate": 1.7944861164647576e-06,
1988
+ "loss": 0.0899,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 17.42,
1993
+ "learning_rate": 1.7244640932200484e-06,
1994
+ "loss": 0.0845,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 17.47,
1999
+ "learning_rate": 1.6557739698909436e-06,
2000
+ "loss": 0.1045,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 17.53,
2005
+ "learning_rate": 1.5884207525341566e-06,
2006
+ "loss": 0.0789,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 17.58,
2011
+ "learning_rate": 1.5224093497742654e-06,
2012
+ "loss": 0.1224,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 17.63,
2017
+ "learning_rate": 1.4577445724459382e-06,
2018
+ "loss": 0.1201,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 17.68,
2023
+ "learning_rate": 1.3944311332433368e-06,
2024
+ "loss": 0.1676,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 17.74,
2029
+ "learning_rate": 1.3324736463766775e-06,
2030
+ "loss": 0.0922,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 17.79,
2035
+ "learning_rate": 1.2718766272359195e-06,
2036
+ "loss": 0.096,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 17.84,
2041
+ "learning_rate": 1.2126444920617297e-06,
2042
+ "loss": 0.115,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 17.89,
2047
+ "learning_rate": 1.154781557623592e-06,
2048
+ "loss": 0.0891,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 17.95,
2053
+ "learning_rate": 1.0982920409052312e-06,
2054
+ "loss": 0.0937,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 18.0,
2059
+ "learning_rate": 1.0431800587972862e-06,
2060
+ "loss": 0.144,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 18.05,
2065
+ "learning_rate": 9.894496277972498e-07,
2066
+ "loss": 0.1003,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 18.11,
2071
+ "learning_rate": 9.371046637167835e-07,
2072
+ "loss": 0.0836,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 18.16,
2077
+ "learning_rate": 8.861489813963154e-07,
2078
+ "loss": 0.09,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 18.21,
2083
+ "learning_rate": 8.365862944270243e-07,
2084
+ "loss": 0.1049,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 18.26,
2089
+ "learning_rate": 7.884202148802056e-07,
2090
+ "loss": 0.0909,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 18.32,
2095
+ "learning_rate": 7.416542530440174e-07,
2096
+ "loss": 0.1455,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 18.37,
2101
+ "learning_rate": 6.962918171676536e-07,
2102
+ "loss": 0.0975,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 18.42,
2107
+ "learning_rate": 6.523362132129718e-07,
2108
+ "loss": 0.1263,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 18.47,
2113
+ "learning_rate": 6.097906446135349e-07,
2114
+ "loss": 0.101,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 18.53,
2119
+ "learning_rate": 5.68658212041171e-07,
2120
+ "loss": 0.1289,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 18.58,
2125
+ "learning_rate": 5.289419131799811e-07,
2126
+ "loss": 0.1259,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 18.63,
2131
+ "learning_rate": 4.906446425078782e-07,
2132
+ "loss": 0.1038,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 18.68,
2137
+ "learning_rate": 4.5376919108565345e-07,
2138
+ "loss": 0.0813,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 18.74,
2143
+ "learning_rate": 4.183182463535418e-07,
2144
+ "loss": 0.1128,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 18.79,
2149
+ "learning_rate": 3.842943919353914e-07,
2150
+ "loss": 0.1093,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 18.84,
2155
+ "learning_rate": 3.517001074503501e-07,
2156
+ "loss": 0.0865,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 18.89,
2161
+ "learning_rate": 3.2053776833216533e-07,
2162
+ "loss": 0.0916,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 18.95,
2167
+ "learning_rate": 2.9080964565606273e-07,
2168
+ "loss": 0.1151,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 19.0,
2173
+ "learning_rate": 2.625179059732341e-07,
2174
+ "loss": 0.1344,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 19.05,
2179
+ "learning_rate": 2.356646111529415e-07,
2180
+ "loss": 0.1064,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 19.11,
2185
+ "learning_rate": 2.102517182322483e-07,
2186
+ "loss": 0.1053,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 19.16,
2191
+ "learning_rate": 1.862810792733849e-07,
2192
+ "loss": 0.0972,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 19.21,
2197
+ "learning_rate": 1.6375444122879613e-07,
2198
+ "loss": 0.0987,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 19.26,
2203
+ "learning_rate": 1.4267344581380127e-07,
2204
+ "loss": 0.1519,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 19.32,
2209
+ "learning_rate": 1.2303962938696068e-07,
2210
+ "loss": 0.0834,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 19.37,
2215
+ "learning_rate": 1.0485442283810321e-07,
2216
+ "loss": 0.1057,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 19.42,
2221
+ "learning_rate": 8.811915148404294e-08,
2222
+ "loss": 0.0887,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 19.47,
2227
+ "learning_rate": 7.283503497200083e-08,
2228
+ "loss": 0.0955,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 19.53,
2233
+ "learning_rate": 5.900318719070264e-08,
2234
+ "loss": 0.1124,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 19.58,
2239
+ "learning_rate": 4.6624616189214765e-08,
2240
+ "loss": 0.1663,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 19.63,
2245
+ "learning_rate": 3.570022410347651e-08,
2246
+ "loss": 0.1356,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 19.68,
2251
+ "learning_rate": 2.623080709054149e-08,
2252
+ "loss": 0.1042,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 19.74,
2257
+ "learning_rate": 1.8217055270568497e-08,
2258
+ "loss": 0.0729,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 19.79,
2263
+ "learning_rate": 1.1659552676519525e-08,
2264
+ "loss": 0.0972,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 19.84,
2269
+ "learning_rate": 6.558777211598255e-09,
2270
+ "loss": 0.1289,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 19.89,
2275
+ "learning_rate": 2.9151006144201298e-09,
2276
+ "loss": 0.1013,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 19.95,
2281
+ "learning_rate": 7.287884319184813e-10,
2282
+ "loss": 0.0726,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 20.0,
2287
+ "learning_rate": 0.0,
2288
+ "loss": 0.1038,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 20.0,
2293
+ "step": 380,
2294
+ "total_flos": 1.2544198305644544e+17,
2295
+ "train_loss": 0.2236757378829153,
2296
+ "train_runtime": 2520.2948,
2297
+ "train_samples_per_second": 18.744,
2298
+ "train_steps_per_second": 0.151
2299
+ }
2300
+ ],
2301
+ "logging_steps": 1.0,
2302
+ "max_steps": 380,
2303
+ "num_train_epochs": 20,
2304
+ "save_steps": 500,
2305
+ "total_flos": 1.2544198305644544e+17,
2306
+ "trial_name": null,
2307
+ "trial_params": null
2308
+ }
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_cyp450/README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+
9
+ - PEFT 0.5.0
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_cyp450/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "./vicuna-v1-3-7b",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 256,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 128,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "gate_proj",
18
+ "down_proj",
19
+ "q_proj",
20
+ "v_proj",
21
+ "o_proj",
22
+ "up_proj",
23
+ "k_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_cyp450/config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./vicuna-v1-3-7b",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": false,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 2048,
14
+ "mm_graph_tower": "hvqvae2",
15
+ "mm_hidden_size": 308,
16
+ "mm_projector_type": "hlinear",
17
+ "mm_use_im_patch_token": false,
18
+ "mm_use_im_start_end": false,
19
+ "model_type": "llava_graph",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 32,
23
+ "pad_token_id": 0,
24
+ "pretraining_tp": 1,
25
+ "rms_norm_eps": 1e-06,
26
+ "rope_scaling": null,
27
+ "rope_theta": 10000.0,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "float16",
30
+ "transformers_version": "4.33.2",
31
+ "tune_mm_mlp_adapter": false,
32
+ "use_cache": true,
33
+ "use_lap_pe": true,
34
+ "use_mm_proj": true,
35
+ "vocab_size": 32000
36
+ }
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_cyp450/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_muv/README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+
9
+ - PEFT 0.5.0
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_muv/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "./vicuna-v1-3-7b",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 256,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 128,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "gate_proj",
18
+ "v_proj",
19
+ "down_proj",
20
+ "up_proj",
21
+ "q_proj",
22
+ "k_proj",
23
+ "o_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_muv/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:328cad954d1e8571e2c38737f610c22e395c2d50f4398c5d3dc58c559d143c86
3
+ size 639786637
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_muv/config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./vicuna-v1-3-7b",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": false,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 2048,
14
+ "mm_graph_tower": "hvqvae2",
15
+ "mm_hidden_size": 308,
16
+ "mm_projector_type": "hlinear",
17
+ "mm_use_im_patch_token": false,
18
+ "mm_use_im_start_end": false,
19
+ "model_type": "llava_graph",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 32,
23
+ "pad_token_id": 0,
24
+ "pretraining_tp": 1,
25
+ "rms_norm_eps": 1e-06,
26
+ "rope_scaling": null,
27
+ "rope_theta": 10000.0,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "float16",
30
+ "transformers_version": "4.33.2",
31
+ "tune_mm_mlp_adapter": false,
32
+ "use_cache": true,
33
+ "use_lap_pe": true,
34
+ "use_mm_proj": true,
35
+ "vocab_size": 32000
36
+ }
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_muv/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05ba3c951e28a452dea5de42afef15c938838efdcfc7ace6367d07642be1cc06
3
+ size 11335231
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_muv/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_sider/README.md ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ ---
4
+ ## Training procedure
5
+
6
+ ### Framework versions
7
+
8
+
9
+ - PEFT 0.5.0
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_sider/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_mapping": null,
3
+ "base_model_name_or_path": "./vicuna-v1-3-7b",
4
+ "bias": "none",
5
+ "fan_in_fan_out": false,
6
+ "inference_mode": true,
7
+ "init_lora_weights": true,
8
+ "layers_pattern": null,
9
+ "layers_to_transform": null,
10
+ "lora_alpha": 256,
11
+ "lora_dropout": 0.05,
12
+ "modules_to_save": null,
13
+ "peft_type": "LORA",
14
+ "r": 128,
15
+ "revision": null,
16
+ "target_modules": [
17
+ "up_proj",
18
+ "v_proj",
19
+ "q_proj",
20
+ "o_proj",
21
+ "k_proj",
22
+ "gate_proj",
23
+ "down_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_sider/adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6685fba4bef8bb80482d235d034bd1d5cc1e443e3b5dc01f299d510d01db2f3d
3
+ size 639786637
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_sider/config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./vicuna-v1-3-7b",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "freeze_mm_mlp_adapter": false,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 2048,
14
+ "mm_graph_tower": "hvqvae2",
15
+ "mm_hidden_size": 308,
16
+ "mm_projector_type": "hlinear",
17
+ "mm_use_im_patch_token": false,
18
+ "mm_use_im_start_end": false,
19
+ "model_type": "llava_graph",
20
+ "num_attention_heads": 32,
21
+ "num_hidden_layers": 32,
22
+ "num_key_value_heads": 32,
23
+ "pad_token_id": 0,
24
+ "pretraining_tp": 1,
25
+ "rms_norm_eps": 1e-06,
26
+ "rope_scaling": null,
27
+ "rope_theta": 10000.0,
28
+ "tie_word_embeddings": false,
29
+ "torch_dtype": "float16",
30
+ "transformers_version": "4.33.2",
31
+ "tune_mm_mlp_adapter": false,
32
+ "use_cache": true,
33
+ "use_lap_pe": true,
34
+ "use_mm_proj": true,
35
+ "vocab_size": 32000
36
+ }
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_sider/non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96dd77e8eaf9d0f27d20361dcbfef3a531b1f7ca98a7f87c55234c6542f914d4
3
+ size 11335231
vicuna/MoleculeNet-llava-hvqvae2-vicuna-v1-3-7b-finetune_lora-large_gimlet_sider/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff