End of training
Browse files
README.md
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: mit
|
4 |
+
base_model: fxmarty/really-tiny-falcon-testing
|
5 |
+
tags:
|
6 |
+
- axolotl
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: 418e6629-dcd3-424e-b3db-50c11d0d7c6b
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
17 |
+
<br>
|
18 |
+
|
19 |
+
# 418e6629-dcd3-424e-b3db-50c11d0d7c6b
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [fxmarty/really-tiny-falcon-testing](https://huggingface.co/fxmarty/really-tiny-falcon-testing) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 10.9416
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.000214
|
43 |
+
- train_batch_size: 4
|
44 |
+
- eval_batch_size: 4
|
45 |
+
- seed: 140
|
46 |
+
- gradient_accumulation_steps: 8
|
47 |
+
- total_train_batch_size: 32
|
48 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
49 |
+
- lr_scheduler_type: cosine
|
50 |
+
- lr_scheduler_warmup_steps: 100
|
51 |
+
- training_steps: 25000
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
56 |
+
|:-------------:|:------:|:-----:|:---------------:|
|
57 |
+
| No log | 0.0001 | 1 | 11.0842 |
|
58 |
+
| 87.9206 | 0.0563 | 500 | 10.9867 |
|
59 |
+
| 87.8458 | 0.1127 | 1000 | 10.9740 |
|
60 |
+
| 87.8012 | 0.1690 | 1500 | 10.9673 |
|
61 |
+
| 87.7685 | 0.2254 | 2000 | 10.9628 |
|
62 |
+
| 87.7475 | 0.2817 | 2500 | 10.9602 |
|
63 |
+
| 87.7401 | 0.3381 | 3000 | 10.9575 |
|
64 |
+
| 87.7205 | 0.3944 | 3500 | 10.9554 |
|
65 |
+
| 87.6986 | 0.4508 | 4000 | 10.9532 |
|
66 |
+
| 87.6961 | 0.5071 | 4500 | 10.9514 |
|
67 |
+
| 87.677 | 0.5635 | 5000 | 10.9498 |
|
68 |
+
| 87.6867 | 0.6198 | 5500 | 10.9488 |
|
69 |
+
| 87.6773 | 0.6762 | 6000 | 10.9481 |
|
70 |
+
| 87.6696 | 0.7325 | 6500 | 10.9472 |
|
71 |
+
| 87.664 | 0.7889 | 7000 | 10.9466 |
|
72 |
+
| 87.6684 | 0.8452 | 7500 | 10.9463 |
|
73 |
+
| 87.6553 | 0.9015 | 8000 | 10.9458 |
|
74 |
+
| 87.6592 | 0.9579 | 8500 | 10.9454 |
|
75 |
+
| 87.6622 | 1.0143 | 9000 | 10.9448 |
|
76 |
+
| 87.6536 | 1.0706 | 9500 | 10.9444 |
|
77 |
+
| 87.6519 | 1.1270 | 10000 | 10.9442 |
|
78 |
+
| 87.6443 | 1.1833 | 10500 | 10.9439 |
|
79 |
+
| 87.6468 | 1.2397 | 11000 | 10.9438 |
|
80 |
+
| 87.6477 | 1.2960 | 11500 | 10.9434 |
|
81 |
+
| 87.6381 | 1.3524 | 12000 | 10.9433 |
|
82 |
+
| 87.6359 | 1.4087 | 12500 | 10.9430 |
|
83 |
+
| 87.6432 | 1.4650 | 13000 | 10.9428 |
|
84 |
+
| 87.6428 | 1.5214 | 13500 | 10.9428 |
|
85 |
+
| 87.634 | 1.5777 | 14000 | 10.9426 |
|
86 |
+
| 87.6254 | 1.6341 | 14500 | 10.9425 |
|
87 |
+
| 87.6294 | 1.6904 | 15000 | 10.9424 |
|
88 |
+
| 87.6307 | 1.7468 | 15500 | 10.9422 |
|
89 |
+
| 87.6393 | 1.8031 | 16000 | 10.9422 |
|
90 |
+
| 87.6266 | 1.8595 | 16500 | 10.9421 |
|
91 |
+
| 87.6327 | 1.9158 | 17000 | 10.9419 |
|
92 |
+
| 87.6298 | 1.9722 | 17500 | 10.9419 |
|
93 |
+
| 87.6353 | 2.0285 | 18000 | 10.9420 |
|
94 |
+
| 87.6329 | 2.0849 | 18500 | 10.9418 |
|
95 |
+
| 87.6332 | 2.1412 | 19000 | 10.9418 |
|
96 |
+
| 87.6301 | 2.1976 | 19500 | 10.9417 |
|
97 |
+
| 87.6308 | 2.2539 | 20000 | 10.9417 |
|
98 |
+
| 87.6302 | 2.3103 | 20500 | 10.9417 |
|
99 |
+
| 87.6378 | 2.3666 | 21000 | 10.9416 |
|
100 |
+
| 87.6317 | 2.4230 | 21500 | 10.9416 |
|
101 |
+
| 87.6272 | 2.4793 | 22000 | 10.9416 |
|
102 |
+
| 87.6308 | 2.5357 | 22500 | 10.9416 |
|
103 |
+
| 87.6299 | 2.5920 | 23000 | 10.9416 |
|
104 |
+
| 87.6303 | 2.6484 | 23500 | 10.9416 |
|
105 |
+
| 87.6262 | 2.7047 | 24000 | 10.9415 |
|
106 |
+
| 87.6281 | 2.7610 | 24500 | 10.9415 |
|
107 |
+
| 87.6344 | 2.8174 | 25000 | 10.9416 |
|
108 |
+
|
109 |
+
|
110 |
+
### Framework versions
|
111 |
+
|
112 |
+
- PEFT 0.13.2
|
113 |
+
- Transformers 4.46.0
|
114 |
+
- Pytorch 2.5.0+cu124
|
115 |
+
- Datasets 3.0.1
|
116 |
+
- Tokenizers 0.20.1
|