File size: 2,266 Bytes
46b551e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: peft
base_model: Korabbit/llama-2-ko-7b
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 2493e57b-de64-4dd4-b986-1eff20f15fa3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<br>
# 2493e57b-de64-4dd4-b986-1eff20f15fa3
This model is a fine-tuned version of [Korabbit/llama-2-ko-7b](https://huggingface.co/Korabbit/llama-2-ko-7b) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5627
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000214
- train_batch_size: 4
- eval_batch_size: 4
- seed: 140
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0005 | 1 | 1.1167 |
| 0.5741 | 0.0258 | 50 | 0.6580 |
| 0.5458 | 0.0516 | 100 | 0.6708 |
| 0.541 | 0.0774 | 150 | 0.6404 |
| 0.5495 | 0.1033 | 200 | 0.6214 |
| 0.5433 | 0.1291 | 250 | 0.6066 |
| 0.5177 | 0.1549 | 300 | 0.5884 |
| 0.535 | 0.1807 | 350 | 0.5746 |
| 0.4859 | 0.2065 | 400 | 0.5650 |
| 0.4975 | 0.2323 | 450 | 0.5632 |
| 0.4496 | 0.2581 | 500 | 0.5627 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1 |