--- library_name: peft base_model: katuni4ka/tiny-random-qwen1.5-moe tags: - axolotl - generated_from_trainer model-index: - name: eedf5c68-46f9-4642-8562-3d87f73846ad results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-qwen1.5-moe bf16: true chat_template: llama3 datasets: - data_files: - b4d2ba1803d2784f_train_data.json ds_type: json format: custom path: /workspace/input_data/b4d2ba1803d2784f_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false hub_model_id: lesso11/eedf5c68-46f9-4642-8562-3d87f73846ad hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 77GiB max_steps: 50 micro_batch_size: 8 mlflow_experiment_name: /tmp/b4d2ba1803d2784f_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: true trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 1c169d6e-e69f-4e42-bc7b-e7be25bc6d95 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 1c169d6e-e69f-4e42-bc7b-e7be25bc6d95 warmup_steps: 10 weight_decay: 0.01 xformers_attention: false ```

# eedf5c68-46f9-4642-8562-3d87f73846ad This model is a fine-tuned version of [katuni4ka/tiny-random-qwen1.5-moe](https://huggingface.co/katuni4ka/tiny-random-qwen1.5-moe) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.9164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 11.9302 | 0.0003 | 1 | 11.9307 | | 11.9335 | 0.0016 | 5 | 11.9303 | | 11.9266 | 0.0032 | 10 | 11.9286 | | 11.9255 | 0.0049 | 15 | 11.9261 | | 11.9239 | 0.0065 | 20 | 11.9236 | | 11.9197 | 0.0081 | 25 | 11.9213 | | 11.9239 | 0.0097 | 30 | 11.9193 | | 11.923 | 0.0113 | 35 | 11.9178 | | 11.9169 | 0.0129 | 40 | 11.9169 | | 11.9183 | 0.0146 | 45 | 11.9165 | | 11.9227 | 0.0162 | 50 | 11.9164 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1