--- library_name: peft base_model: katuni4ka/tiny-random-qwen1.5-moe tags: - axolotl - generated_from_trainer model-index: - name: 1f140cc0-8ab6-497b-b951-0e8bcc772491 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
# 1f140cc0-8ab6-497b-b951-0e8bcc772491 This model is a fine-tuned version of [katuni4ka/tiny-random-qwen1.5-moe](https://huggingface.co/katuni4ka/tiny-random-qwen1.5-moe) on the None dataset. It achieves the following results on the evaluation set: - Loss: 11.7416 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000211 - train_batch_size: 4 - eval_batch_size: 4 - seed: 110 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 9000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0003 | 1 | 11.9364 | | 11.7938 | 0.1516 | 500 | 11.7862 | | 11.7802 | 0.3033 | 1000 | 11.7740 | | 11.7721 | 0.4549 | 1500 | 11.7675 | | 11.771 | 0.6066 | 2000 | 11.7623 | | 11.7686 | 0.7582 | 2500 | 11.7571 | | 11.7635 | 0.9098 | 3000 | 11.7530 | | 11.7783 | 1.0615 | 3500 | 11.7503 | | 11.749 | 1.2131 | 4000 | 11.7483 | | 11.7695 | 1.3648 | 4500 | 11.7463 | | 11.7511 | 1.5164 | 5000 | 11.7456 | | 11.7489 | 1.6681 | 5500 | 11.7442 | | 11.7429 | 1.8197 | 6000 | 11.7433 | | 11.7575 | 1.9713 | 6500 | 11.7425 | | 11.7575 | 2.1230 | 7000 | 11.7422 | | 11.7637 | 2.2746 | 7500 | 11.7419 | | 11.7554 | 2.4263 | 8000 | 11.7417 | | 11.7528 | 2.5779 | 8500 | 11.7416 | | 11.7544 | 2.7295 | 9000 | 11.7416 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1