from . import SentenceEvaluator import logging from ..util import pytorch_cos_sim import os import csv import numpy as np import scipy.spatial from typing import List import torch logger = logging.getLogger(__name__) class TranslationEvaluator(SentenceEvaluator): """ Given two sets of sentences in different languages, e.g. (en_1, en_2, en_3...) and (fr_1, fr_2, fr_3, ...), and assuming that fr_i is the translation of en_i. Checks if vec(en_i) has the highest similarity to vec(fr_i). Computes the accurarcy in both directions """ def __init__(self, source_sentences: List[str], target_sentences: List[str], show_progress_bar: bool = False, batch_size: int = 16, name: str = '', print_wrong_matches: bool = False, write_csv: bool = True): """ Constructs an evaluator based for the dataset The labels need to indicate the similarity between the sentences. :param source_sentences: List of sentences in source language :param target_sentences: List of sentences in target language :param print_wrong_matches: Prints incorrect matches :param write_csv: Write results to CSV file """ self.source_sentences = source_sentences self.target_sentences = target_sentences self.name = name self.batch_size = batch_size self.show_progress_bar = show_progress_bar self.print_wrong_matches = print_wrong_matches assert len(self.source_sentences) == len(self.target_sentences) if name: name = "_"+name self.csv_file = "translation_evaluation"+name+"_results.csv" self.csv_headers = ["epoch", "steps", "src2trg", "trg2src"] self.write_csv = write_csv def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1) -> float: if epoch != -1: if steps == -1: out_txt = " after epoch {}:".format(epoch) else: out_txt = " in epoch {} after {} steps:".format(epoch, steps) else: out_txt = ":" logger.info("Evaluating translation matching Accuracy on "+self.name+" dataset"+out_txt) embeddings1 = torch.stack(model.encode(self.source_sentences, show_progress_bar=self.show_progress_bar, batch_size=self.batch_size, convert_to_numpy=False)) embeddings2 = torch.stack(model.encode(self.target_sentences, show_progress_bar=self.show_progress_bar, batch_size=self.batch_size, convert_to_numpy=False)) cos_sims = pytorch_cos_sim(embeddings1, embeddings2).detach().cpu().numpy() correct_src2trg = 0 correct_trg2src = 0 for i in range(len(cos_sims)): max_idx = np.argmax(cos_sims[i]) if i == max_idx: correct_src2trg += 1 elif self.print_wrong_matches: print("i:", i, "j:", max_idx, "INCORRECT" if i != max_idx else "CORRECT") print("Src:", self.source_sentences[i]) print("Trg:", self.target_sentences[max_idx]) print("Argmax score:", cos_sims[i][max_idx], "vs. correct score:", cos_sims[i][i]) results = zip(range(len(cos_sims[i])), cos_sims[i]) results = sorted(results, key=lambda x: x[1], reverse=True) for idx, score in results[0:5]: print("\t", idx, "(Score: %.4f)" % (score), self.target_sentences[idx]) cos_sims = cos_sims.T for i in range(len(cos_sims)): max_idx = np.argmax(cos_sims[i]) if i == max_idx: correct_trg2src += 1 acc_src2trg = correct_src2trg / len(cos_sims) acc_trg2src = correct_trg2src / len(cos_sims) logger.info("Accuracy src2trg: {:.2f}".format(acc_src2trg*100)) logger.info("Accuracy trg2src: {:.2f}".format(acc_trg2src*100)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, newline='', mode="a" if output_file_exists else 'w', encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps, acc_src2trg, acc_trg2src]) return (acc_src2trg+acc_trg2src)/2