from sentence_transformers.evaluation import SentenceEvaluator from sentence_transformers.util import batch_to_device from sentence_transformers import SentenceTransformer from typing import List, Tuple, Dict import torch import numpy as np import logging import os import csv logger = logging.getLogger(__name__) class MSEEvaluatorFromDataFrame(SentenceEvaluator): """ Computes the mean squared error (x100) between the computed sentence embedding and some target sentence embedding. :param dataframe: It must have the following format. Rows contains different, parallel sentences. Columns are the respective language codes [{'en': 'My sentence', 'es': 'Sentence in Spanisch', 'fr': 'Sentence in French'...}, {'en': 'My second sentence', ....] :param combinations: Must be of the format [('en', 'es'), ('en', 'fr'), ...] First entry in a tuple is the source language. The sentence in the respective language will be fetched from the dataframe and passed to the teacher model. Second entry in a tuple the the target language. Sentence will be fetched from the dataframe and passed to the student model """ def __init__(self, dataframe: List[Dict[str, str]], teacher_model: SentenceTransformer, combinations: List[Tuple[str, str]], batch_size: int = 8, name='', write_csv: bool = True): self.combinations = combinations self.name = name self.batch_size = batch_size if name: name = "_"+name self.csv_file = "mse_evaluation" + name + "_results.csv" self.csv_headers = ["epoch", "steps"] self.write_csv = write_csv self.data = {} logger.info("Compute teacher embeddings") all_source_sentences = set() for src_lang, trg_lang in self.combinations: src_sentences = [] trg_sentences = [] for row in dataframe: if row[src_lang].strip() != "" and row[trg_lang].strip() != "": all_source_sentences.add(row[src_lang]) src_sentences.append(row[src_lang]) trg_sentences.append(row[trg_lang]) self.data[(src_lang, trg_lang)] = (src_sentences, trg_sentences) self.csv_headers.append("{}-{}".format(src_lang, trg_lang)) all_source_sentences = list(all_source_sentences) all_src_embeddings = teacher_model.encode(all_source_sentences, batch_size=self.batch_size) self.teacher_embeddings = {sent: emb for sent, emb in zip(all_source_sentences, all_src_embeddings)} def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1): model.eval() mse_scores = [] for src_lang, trg_lang in self.combinations: src_sentences, trg_sentences = self.data[(src_lang, trg_lang)] src_embeddings = np.asarray([self.teacher_embeddings[sent] for sent in src_sentences]) trg_embeddings = np.asarray(model.encode(trg_sentences, batch_size=self.batch_size)) mse = ((src_embeddings - trg_embeddings) ** 2).mean() mse *= 100 mse_scores.append(mse) logger.info("MSE evaluation on {} dataset - {}-{}:".format(self.name, src_lang, trg_lang)) logger.info("MSE (*100):\t{:4f}".format(mse)) if output_path is not None and self.write_csv: csv_path = os.path.join(output_path, self.csv_file) output_file_exists = os.path.isfile(csv_path) with open(csv_path, newline='', mode="a" if output_file_exists else 'w', encoding="utf-8") as f: writer = csv.writer(f) if not output_file_exists: writer.writerow(self.csv_headers) writer.writerow([epoch, steps]+mse_scores) return -np.mean(mse_scores) #Return negative score as SentenceTransformers maximizes the performance