""" """ from torch.utils.data import IterableDataset import numpy as np from typing import List from ..readers import InputExample import logging logger = logging.getLogger(__name__) class SentenceLabelDataset(IterableDataset): """ This dataset can be used for some specific Triplet Losses like BATCH_HARD_TRIPLET_LOSS which requires multiple examples with the same label in a batch. It draws n consecutive, random and unique samples from one label at a time. This is repeated for each label. Labels with fewer than n unique samples are ignored. This also applied to drawing without replacement, once less than n samples remain for a label, it is skipped. This *DOES NOT* check if there are more labels than the batch is large or if the batch size is divisible by the samples drawn per label. """ def __init__(self, examples: List[InputExample], samples_per_label: int = 2, with_replacement: bool = False): """ Creates a LabelSampler for a SentenceLabelDataset. :param examples: a list with InputExamples :param samples_per_label: the number of consecutive, random and unique samples drawn per label. Batch size should be a multiple of samples_per_label :param with_replacement: if this is True, then each sample is drawn at most once (depending on the total number of samples per label). if this is False, then one sample can be drawn in multiple draws, but still not multiple times in the same drawing. """ super().__init__() self.samples_per_label = samples_per_label #Group examples by label label2ex = {} for example in examples: if example.label not in label2ex: label2ex[example.label] = [] label2ex[example.label].append(example) #Include only labels with at least 2 examples self.grouped_inputs = [] self.groups_right_border = [] num_labels = 0 for label, label_examples in label2ex.items(): if len(label_examples) >= self.samples_per_label: self.grouped_inputs.extend(label_examples) self.groups_right_border.append(len(self.grouped_inputs)) # At which position does this label group / bucket end? num_labels += 1 self.label_range = np.arange(num_labels) self.with_replacement = with_replacement np.random.shuffle(self.label_range) logger.info("SentenceLabelDataset: {} examples, from which {} examples could be used (those labels appeared at least {} times). {} different labels found.".format(len(examples), len(self.grouped_inputs), self.samples_per_label, num_labels )) def __iter__(self): label_idx = 0 count = 0 already_seen = {} while count < len(self.grouped_inputs): label = self.label_range[label_idx] if label not in already_seen: already_seen[label] = set() left_border = 0 if label == 0 else self.groups_right_border[label-1] right_border = self.groups_right_border[label] if self.with_replacement: selection = np.arange(left_border, right_border) else: selection = [i for i in np.arange(left_border, right_border) if i not in already_seen[label]] if len(selection) >= self.samples_per_label: for element_idx in np.random.choice(selection, self.samples_per_label, replace=False): count += 1 already_seen[label].add(element_idx) yield self.grouped_inputs[element_idx] label_idx += 1 if label_idx >= len(self.label_range): label_idx = 0 already_seen = {} np.random.shuffle(self.label_range) def __len__(self): return len(self.grouped_inputs)