""" This script contains an example how to perform re-ranking with a Cross-Encoder for semantic search. First, we use an efficient Bi-Encoder to retrieve similar questions from the Quora Duplicate Questions dataset: https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs Then, we re-rank the hits from the Bi-Encoder using a Cross-Encoder. """ from sentence_transformers import SentenceTransformer, util from sentence_transformers import CrossEncoder import os import csv import pickle import time import sys # We use a BiEncoder (SentenceTransformer) that produces embeddings for questions. # We then search for similar questions using cosine similarity and identify the top 100 most similar questions model_name = 'all-MiniLM-L6-v2' model = SentenceTransformer(model_name) num_candidates = 500 # To refine the results, we use a CrossEncoder. A CrossEncoder gets both inputs (input_question, retrieved_question) # and outputs a score 0...1 indicating the similarity. cross_encoder_model = CrossEncoder('cross-encoder/roberta-base-stsb') # Dataset we want to use url = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv" dataset_path = "quora_duplicate_questions.tsv" max_corpus_size = 20000 # Some local file to cache computed embeddings embedding_cache_path = 'quora-embeddings-{}-size-{}.pkl'.format(model_name.replace('/', '_'), max_corpus_size) #Check if embedding cache path exists if not os.path.exists(embedding_cache_path): # Check if the dataset exists. If not, download and extract # Download dataset if needed if not os.path.exists(dataset_path): print("Download dataset") util.http_get(url, dataset_path) # Get all unique sentences from the file corpus_sentences = set() with open(dataset_path, encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_MINIMAL) for row in reader: corpus_sentences.add(row['question1']) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences.add(row['question2']) if len(corpus_sentences) >= max_corpus_size: break corpus_sentences = list(corpus_sentences) print("Encode the corpus. This might take a while") corpus_embeddings = model.encode(corpus_sentences, show_progress_bar=True, convert_to_tensor=True, num_workers=2) print("Store file on disc") with open(embedding_cache_path, "wb") as fOut: pickle.dump({'sentences': corpus_sentences, 'embeddings': corpus_embeddings}, fOut) else: print("Load pre-computed embeddings from disc") with open(embedding_cache_path, "rb") as fIn: cache_data = pickle.load(fIn) corpus_sentences = cache_data['sentences'][0:max_corpus_size] corpus_embeddings = cache_data['embeddings'][0:max_corpus_size] ############################### print("Corpus loaded with {} sentences / embeddings".format(len(corpus_sentences))) while True: inp_question = input("Please enter a question: ") print("Input question:", inp_question) #First, retrieve candidates using cosine similarity search start_time = time.time() question_embedding = model.encode(inp_question, convert_to_tensor=True) hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=num_candidates) hits = hits[0] #Get the hits for the first query print("Cosine-Similarity search took {:.3f} seconds".format(time.time()-start_time)) print("Top 5 hits with cosine-similarity:") for hit in hits[0:5]: print("\t{:.3f}\t{}".format(hit['score'], corpus_sentences[hit['corpus_id']])) #Now, do the re-ranking with the cross-encoder start_time = time.time() sentence_pairs = [[inp_question, corpus_sentences[hit['corpus_id']]] for hit in hits] ce_scores = cross_encoder_model.predict(sentence_pairs) for idx in range(len(hits)): hits[idx]['cross-encoder_score'] = ce_scores[idx] #Sort list by CrossEncoder scores hits = sorted(hits, key=lambda x: x['cross-encoder_score'], reverse=True) print("\nRe-ranking with Cross-Encoder took {:.3f} seconds".format(time.time() - start_time)) print("Top 5 hits with CrossEncoder:") for hit in hits[0:5]: print("\t{:.3f}\t{}".format(hit['cross-encoder_score'], corpus_sentences[hit['corpus_id']])) print("\n\n========\n")