import torch from torch import Tensor from torch import nn from typing import Union, Tuple, List, Iterable, Dict import os import json import logging logger = logging.getLogger(__name__) class WordWeights(nn.Module): """This model can weight word embeddings, for example, with idf-values.""" def __init__(self, vocab: List[str], word_weights: Dict[str, float], unknown_word_weight: float = 1): """ :param vocab: Vocabulary of the tokenizer :param word_weights: Mapping of tokens to a float weight value. Words embeddings are multiplied by this float value. Tokens in word_weights must not be equal to the vocab (can contain more or less values) :param unknown_word_weight: Weight for words in vocab, that do not appear in the word_weights lookup. These can be for example rare words in the vocab, where no weight exists. """ super(WordWeights, self).__init__() self.config_keys = ['vocab', 'word_weights', 'unknown_word_weight'] self.vocab = vocab self.word_weights = word_weights self.unknown_word_weight = unknown_word_weight weights = [] num_unknown_words = 0 for word in vocab: weight = unknown_word_weight if word in word_weights: weight = word_weights[word] elif word.lower() in word_weights: weight = word_weights[word.lower()] else: num_unknown_words += 1 weights.append(weight) logger.info("{} of {} words without a weighting value. Set weight to {}".format(num_unknown_words, len(vocab), unknown_word_weight)) self.emb_layer = nn.Embedding(len(vocab), 1) self.emb_layer.load_state_dict({'weight': torch.FloatTensor(weights).unsqueeze(1)}) def forward(self, features: Dict[str, Tensor]): attention_mask = features['attention_mask'] token_embeddings = features['token_embeddings'] #Compute a weight value for each token token_weights_raw = self.emb_layer(features['input_ids']).squeeze(-1) token_weights = token_weights_raw * attention_mask.float() token_weights_sum = torch.sum(token_weights, 1) #Multiply embedding by token weight value token_weights_expanded = token_weights.unsqueeze(-1).expand(token_embeddings.size()) token_embeddings = token_embeddings * token_weights_expanded features.update({'token_embeddings': token_embeddings, 'token_weights_sum': token_weights_sum}) return features def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, 'config.json'), 'w') as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path): with open(os.path.join(input_path, 'config.json')) as fIn: config = json.load(fIn) return WordWeights(**config)