from torch import nn from transformers import AutoModel, AutoTokenizer, AutoConfig, T5Config, MT5Config import json from typing import List, Dict, Optional, Union, Tuple import os class Transformer(nn.Module): """Huggingface AutoModel to generate token embeddings. Loads the correct class, e.g. BERT / RoBERTa etc. :param model_name_or_path: Huggingface models name (https://huggingface.co/models) :param max_seq_length: Truncate any inputs longer than max_seq_length :param model_args: Arguments (key, value pairs) passed to the Huggingface Transformers model :param cache_dir: Cache dir for Huggingface Transformers to store/load models :param tokenizer_args: Arguments (key, value pairs) passed to the Huggingface Tokenizer model :param do_lower_case: If true, lowercases the input (independent if the model is cased or not) :param tokenizer_name_or_path: Name or path of the tokenizer. When None, then model_name_or_path is used """ def __init__(self, model_name_or_path: str, max_seq_length: Optional[int] = None, model_args: Dict = {}, cache_dir: Optional[str] = None, tokenizer_args: Dict = {}, do_lower_case: bool = False, tokenizer_name_or_path : str = None): super(Transformer, self).__init__() self.config_keys = ['max_seq_length', 'do_lower_case'] self.do_lower_case = do_lower_case config = AutoConfig.from_pretrained(model_name_or_path, **model_args, cache_dir=cache_dir) self._load_model(model_name_or_path, config, cache_dir, **model_args) self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path, cache_dir=cache_dir, **tokenizer_args) #No max_seq_length set. Try to infer from model if max_seq_length is None: if hasattr(self.auto_model, "config") and hasattr(self.auto_model.config, "max_position_embeddings") and hasattr(self.tokenizer, "model_max_length"): max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length) self.max_seq_length = max_seq_length if tokenizer_name_or_path is not None: self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__ def _load_model(self, model_name_or_path, config, cache_dir, **model_args): """Loads the transformer model""" if isinstance(config, T5Config): self._load_t5_model(model_name_or_path, config, cache_dir, **model_args) elif isinstance(config, MT5Config): self._load_mt5_model(model_name_or_path, config, cache_dir, **model_args) else: self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=config, cache_dir=cache_dir, **model_args) def _load_t5_model(self, model_name_or_path, config, cache_dir, **model_args): """Loads the encoder model from T5""" from transformers import T5EncoderModel T5EncoderModel._keys_to_ignore_on_load_unexpected = ["decoder.*"] self.auto_model = T5EncoderModel.from_pretrained(model_name_or_path, config=config, cache_dir=cache_dir, **model_args) def _load_mt5_model(self, model_name_or_path, config, cache_dir, **model_args): """Loads the encoder model from T5""" from transformers import MT5EncoderModel MT5EncoderModel._keys_to_ignore_on_load_unexpected = ["decoder.*"] self.auto_model = MT5EncoderModel.from_pretrained(model_name_or_path, config=config, cache_dir=cache_dir, **model_args) def __repr__(self): return "Transformer({}) with Transformer model: {} ".format(self.get_config_dict(), self.auto_model.__class__.__name__) def forward(self, features): """Returns token_embeddings, cls_token""" trans_features = {'input_ids': features['input_ids'], 'attention_mask': features['attention_mask']} if 'token_type_ids' in features: trans_features['token_type_ids'] = features['token_type_ids'] output_states = self.auto_model(**trans_features, return_dict=False) output_tokens = output_states[0] features.update({'token_embeddings': output_tokens, 'attention_mask': features['attention_mask']}) if self.auto_model.config.output_hidden_states: all_layer_idx = 2 if len(output_states) < 3: #Some models only output last_hidden_states and all_hidden_states all_layer_idx = 1 hidden_states = output_states[all_layer_idx] features.update({'all_layer_embeddings': hidden_states}) return features def get_word_embedding_dimension(self) -> int: return self.auto_model.config.hidden_size def tokenize(self, texts: Union[List[str], List[Dict], List[Tuple[str, str]]]): """ Tokenizes a text and maps tokens to token-ids """ output = {} if isinstance(texts[0], str): to_tokenize = [texts] elif isinstance(texts[0], dict): to_tokenize = [] output['text_keys'] = [] for lookup in texts: text_key, text = next(iter(lookup.items())) to_tokenize.append(text) output['text_keys'].append(text_key) to_tokenize = [to_tokenize] else: batch1, batch2 = [], [] for text_tuple in texts: batch1.append(text_tuple[0]) batch2.append(text_tuple[1]) to_tokenize = [batch1, batch2] #strip to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize] #Lowercase if self.do_lower_case: to_tokenize = [[s.lower() for s in col] for col in to_tokenize] output.update(self.tokenizer(*to_tokenize, padding=True, truncation='longest_first', return_tensors="pt", max_length=self.max_seq_length)) return output def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path: str): self.auto_model.save_pretrained(output_path) self.tokenizer.save_pretrained(output_path) with open(os.path.join(output_path, 'sentence_bert_config.json'), 'w') as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path: str): #Old classes used other config names than 'sentence_bert_config.json' for config_name in ['sentence_bert_config.json', 'sentence_roberta_config.json', 'sentence_distilbert_config.json', 'sentence_camembert_config.json', 'sentence_albert_config.json', 'sentence_xlm-roberta_config.json', 'sentence_xlnet_config.json']: sbert_config_path = os.path.join(input_path, config_name) if os.path.exists(sbert_config_path): break with open(sbert_config_path) as fIn: config = json.load(fIn) return Transformer(model_name_or_path=input_path, **config)