import torch from torch import Tensor from torch import nn from typing import Union, Tuple, List, Iterable, Dict import os import json class Pooling(nn.Module): """Performs pooling (max or mean) on the token embeddings. Using pooling, it generates from a variable sized sentence a fixed sized sentence embedding. This layer also allows to use the CLS token if it is returned by the underlying word embedding model. You can concatenate multiple poolings together. :param word_embedding_dimension: Dimensions for the word embeddings :param pooling_mode: Can be a string: mean/max/cls. If set, overwrites the other pooling_mode_* settings :param pooling_mode_cls_token: Use the first token (CLS token) as text representations :param pooling_mode_max_tokens: Use max in each dimension over all tokens. :param pooling_mode_mean_tokens: Perform mean-pooling :param pooling_mode_mean_sqrt_len_tokens: Perform mean-pooling, but devide by sqrt(input_length). :param pooling_mode_weightedmean_tokens: Perform (position) weighted mean pooling, see https://arxiv.org/abs/2202.08904 :param pooling_mode_lasttoken: Perform last token pooling, see https://arxiv.org/abs/2202.08904 & https://arxiv.org/abs/2201.10005 """ def __init__(self, word_embedding_dimension: int, pooling_mode: str = None, pooling_mode_cls_token: bool = False, pooling_mode_max_tokens: bool = False, pooling_mode_mean_tokens: bool = True, pooling_mode_mean_sqrt_len_tokens: bool = False, pooling_mode_weightedmean_tokens: bool = False, pooling_mode_lasttoken: bool = False, ): super(Pooling, self).__init__() self.config_keys = ['word_embedding_dimension', 'pooling_mode_cls_token', 'pooling_mode_mean_tokens', 'pooling_mode_max_tokens', 'pooling_mode_mean_sqrt_len_tokens', 'pooling_mode_weightedmean_tokens', 'pooling_mode_lasttoken'] if pooling_mode is not None: #Set pooling mode by string pooling_mode = pooling_mode.lower() assert pooling_mode in ['mean', 'max', 'cls', 'weightedmean', 'lasttoken'] pooling_mode_cls_token = (pooling_mode == 'cls') pooling_mode_max_tokens = (pooling_mode == 'max') pooling_mode_mean_tokens = (pooling_mode == 'mean') pooling_mode_weightedmean_tokens = (pooling_mode == 'weightedmean') pooling_mode_lasttoken = (pooling_mode == 'lasttoken') self.word_embedding_dimension = word_embedding_dimension self.pooling_mode_cls_token = pooling_mode_cls_token self.pooling_mode_mean_tokens = pooling_mode_mean_tokens self.pooling_mode_max_tokens = pooling_mode_max_tokens self.pooling_mode_mean_sqrt_len_tokens = pooling_mode_mean_sqrt_len_tokens self.pooling_mode_weightedmean_tokens = pooling_mode_weightedmean_tokens self.pooling_mode_lasttoken = pooling_mode_lasttoken pooling_mode_multiplier = sum([pooling_mode_cls_token, pooling_mode_max_tokens, pooling_mode_mean_tokens, pooling_mode_mean_sqrt_len_tokens, pooling_mode_weightedmean_tokens, pooling_mode_lasttoken]) self.pooling_output_dimension = (pooling_mode_multiplier * word_embedding_dimension) def __repr__(self): return "Pooling({})".format(self.get_config_dict()) def get_pooling_mode_str(self) -> str: """ Returns the pooling mode as string """ modes = [] if self.pooling_mode_cls_token: modes.append('cls') if self.pooling_mode_mean_tokens: modes.append('mean') if self.pooling_mode_max_tokens: modes.append('max') if self.pooling_mode_mean_sqrt_len_tokens: modes.append('mean_sqrt_len_tokens') if self.pooling_mode_weightedmean_tokens: modes.append('weightedmean') if self.pooling_mode_lasttoken: modes.append('lasttoken') return "+".join(modes) def forward(self, features: Dict[str, Tensor]): token_embeddings = features['token_embeddings'] attention_mask = features['attention_mask'] ## Pooling strategy output_vectors = [] if self.pooling_mode_cls_token: cls_token = features.get('cls_token_embeddings', token_embeddings[:, 0]) # Take first token by default output_vectors.append(cls_token) if self.pooling_mode_max_tokens: input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() token_embeddings[input_mask_expanded == 0] = -1e9 # Set padding tokens to large negative value max_over_time = torch.max(token_embeddings, 1)[0] output_vectors.append(max_over_time) if self.pooling_mode_mean_tokens or self.pooling_mode_mean_sqrt_len_tokens: input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) #If tokens are weighted (by WordWeights layer), feature 'token_weights_sum' will be present if 'token_weights_sum' in features: sum_mask = features['token_weights_sum'].unsqueeze(-1).expand(sum_embeddings.size()) else: sum_mask = input_mask_expanded.sum(1) sum_mask = torch.clamp(sum_mask, min=1e-9) if self.pooling_mode_mean_tokens: output_vectors.append(sum_embeddings / sum_mask) if self.pooling_mode_mean_sqrt_len_tokens: output_vectors.append(sum_embeddings / torch.sqrt(sum_mask)) if self.pooling_mode_weightedmean_tokens: input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() # token_embeddings shape: bs, seq, hidden_dim weights = ( torch.arange(start=1, end=token_embeddings.shape[1] + 1) .unsqueeze(0) .unsqueeze(-1) .expand(token_embeddings.size()) .float().to(token_embeddings.device) ) assert weights.shape == token_embeddings.shape == input_mask_expanded.shape input_mask_expanded = input_mask_expanded * weights sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) #If tokens are weighted (by WordWeights layer), feature 'token_weights_sum' will be present if 'token_weights_sum' in features: sum_mask = features['token_weights_sum'].unsqueeze(-1).expand(sum_embeddings.size()) else: sum_mask = input_mask_expanded.sum(1) sum_mask = torch.clamp(sum_mask, min=1e-9) output_vectors.append(sum_embeddings / sum_mask) if self.pooling_mode_lasttoken: bs, seq_len, hidden_dim = token_embeddings.shape # attention_mask shape: (bs, seq_len) # Get shape [bs] indices of the last token (i.e. the last token for each batch item) # argmin gives us the index of the first 0 in the attention mask; We get the last 1 index by subtracting 1 gather_indices = torch.argmin(attention_mask, 1, keepdim=False) - 1 # Shape [bs] # There are empty sequences, where the index would become -1 which will crash gather_indices = torch.clamp(gather_indices, min=0) # Turn indices from shape [bs] --> [bs, 1, hidden_dim] gather_indices = gather_indices.unsqueeze(-1).repeat(1, hidden_dim) gather_indices = gather_indices.unsqueeze(1) assert gather_indices.shape == (bs, 1, hidden_dim) # Gather along the 1st dim (seq_len) (bs, seq_len, hidden_dim -> bs, hidden_dim) # Actually no need for the attention mask as we gather the last token where attn_mask = 1 # but as we set some indices (which shouldn't be attended to) to 0 with clamp, we # use the attention mask to ignore them again input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() embedding = torch.gather(token_embeddings * input_mask_expanded, 1, gather_indices).squeeze(dim=1) output_vectors.append(embedding) output_vector = torch.cat(output_vectors, 1) features.update({'sentence_embedding': output_vector}) return features def get_sentence_embedding_dimension(self): return self.pooling_output_dimension def get_config_dict(self): return {key: self.__dict__[key] for key in self.config_keys} def save(self, output_path): with open(os.path.join(output_path, 'config.json'), 'w') as fOut: json.dump(self.get_config_dict(), fOut, indent=2) @staticmethod def load(input_path): with open(os.path.join(input_path, 'config.json')) as fIn: config = json.load(fIn) return Pooling(**config)