import torch from torch import Tensor from torch import nn from typing import Union, Tuple, List, Iterable, Dict import os import json class LayerNorm(nn.Module): def __init__(self, dimension: int): super(LayerNorm, self).__init__() self.dimension = dimension self.norm = nn.LayerNorm(dimension) def forward(self, features: Dict[str, Tensor]): features['sentence_embedding'] = self.norm(features['sentence_embedding']) return features def get_sentence_embedding_dimension(self): return self.dimension def save(self, output_path): with open(os.path.join(output_path, 'config.json'), 'w') as fOut: json.dump({'dimension': self.dimension}, fOut, indent=2) torch.save(self.state_dict(), os.path.join(output_path, 'pytorch_model.bin')) @staticmethod def load(input_path): with open(os.path.join(input_path, 'config.json')) as fIn: config = json.load(fIn) model = LayerNorm(**config) model.load_state_dict(torch.load(os.path.join(input_path, 'pytorch_model.bin'), map_location=torch.device('cpu'))) return model