from torch.utils.data import DataLoader import math from sentence_transformers import models, losses from sentence_transformers import LoggingHandler, SentenceTransformer, util, InputExample from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator import logging from datetime import datetime import os import gzip import csv #### Just some code to print debug information to stdout logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO, handlers=[LoggingHandler()]) #### /print debug information to stdout # Training parameters model_name = 'distilbert-base-uncased' train_batch_size = 128 num_epochs = 1 max_seq_length = 32 # Save path to store our model model_save_path = 'output/training_stsb_simcse-{}-{}-{}'.format(model_name, train_batch_size, datetime.now().strftime("%Y-%m-%d_%H-%M-%S")) # Check if dataset exsist. If not, download and extract it sts_dataset_path = 'data/stsbenchmark.tsv.gz' if not os.path.exists(sts_dataset_path): util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) # Here we define our SentenceTransformer model word_embedding_model = models.Transformer(model_name, max_seq_length=max_seq_length) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # We use 1 Million sentences from Wikipedia to train our model wikipedia_dataset_path = 'data/wiki1m_for_simcse.txt' if not os.path.exists(wikipedia_dataset_path): util.http_get('https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt', wikipedia_dataset_path) # train_samples is a list of InputExample objects where we pass the same sentence twice to texts, i.e. texts=[sent, sent] train_samples = [] with open(wikipedia_dataset_path, 'r', encoding='utf8') as fIn: for line in fIn: line = line.strip() if len(line) >= 10: train_samples.append(InputExample(texts=[line, line])) # Read STSbenchmark dataset and use it as development set logging.info("Read STSbenchmark dev dataset") dev_samples = [] test_samples = [] with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) for row in reader: score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1 if row['split'] == 'dev': dev_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) elif row['split'] == 'test': test_samples.append(InputExample(texts=[row['sentence1'], row['sentence2']], label=score)) dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, batch_size=train_batch_size, name='sts-dev') test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, batch_size=train_batch_size, name='sts-test') # We train our model using the MultipleNegativesRankingLoss train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=train_batch_size, drop_last=True) train_loss = losses.MultipleNegativesRankingLoss(model) warmup_steps = math.ceil(len(train_dataloader) * num_epochs * 0.1) # 10% of train data for warm-up evaluation_steps = int(len(train_dataloader) * 0.1) #Evaluate every 10% of the data logging.info("Training sentences: {}".format(len(train_samples))) logging.info("Warmup-steps: {}".format(warmup_steps)) logging.info("Performance before training") dev_evaluator(model) # Train the model model.fit(train_objectives=[(train_dataloader, train_loss)], evaluator=dev_evaluator, epochs=num_epochs, evaluation_steps=evaluation_steps, warmup_steps=warmup_steps, output_path=model_save_path, optimizer_params={'lr': 5e-5}, use_amp=True #Set to True, if your GPU supports FP16 cores ) ############################################################################## # # Load the stored model and evaluate its performance on STS benchmark dataset # ############################################################################## model = SentenceTransformer(model_save_path) test_evaluator(model, output_path=model_save_path)