# SimCSE Gao et al. present in [SimCSE](https://arxiv.org/abs/2104.08821) a simple method to train sentence embeddings without having training data. The idea is to encode the same sentence twice. Due to the used dropout in transformer models, both sentence embeddings will be at slightly different positions. The distance between these two embeddings will be minimized, while the distance to other embeddings of the other sentences in the same batch will be maximized (they serve as negative examples). ![SimCSE working](https://raw.githubusercontent.com/UKPLab/sentence-transformers/master/docs/img/SimCSE.png) ## Usage with SentenceTransformers SentenceTransformers implements the [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss), which makes training with SimCSE trivial: ```python from sentence_transformers import SentenceTransformer, InputExample from sentence_transformers import models, losses from torch.utils.data import DataLoader # Define your sentence transformer model using CLS pooling model_name = 'distilroberta-base' word_embedding_model = models.Transformer(model_name, max_seq_length=32) pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension()) model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) # Define a list with sentences (1k - 100k sentences) train_sentences = ["Your set of sentences", "Model will automatically add the noise", "And re-construct it", "You should provide at least 1k sentences"] # Convert train sentences to sentence pairs train_data = [InputExample(texts=[s, s]) for s in train_sentences] # DataLoader to batch your data train_dataloader = DataLoader(train_data, batch_size=128, shuffle=True) # Use the denoising auto-encoder loss train_loss = losses.MultipleNegativesRankingLoss(model) # Call the fit method model.fit( train_objectives=[(train_dataloader, train_loss)], epochs=1, show_progress_bar=True ) model.save('output/simcse-model') ``` ## SimCSE from Sentences File **[train_simcse_from_file.py](train_simcse_from_file.py)** loads sentences from a provided text file. It is expected, that the there is one sentence per line in that text file. SimCSE will be training using these sentences. Checkpoints are stored every 500 steps to the output folder. ## Training Examples - **[train_askubuntu_simcse.py](train_askubuntu_simcse.py)** - Shows the example how to train with SimCSE on the [AskUbuntu Questions dataset](https://github.com/taolei87/askubuntu). - **[train_stsb_simcse.py](train_stsb_simcse.py)** - This script uses 1 million sentences and evaluates SimCSE on the [STSbenchmark dataset](https://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). ## Ablation Study We use the evaluation setup proposed in our [TSDAE paper](https://arxiv.org/abs/2104.06979). Using mean pooling, with max_seq_length=32 and batch_size=128 | Base Model | AskUbuntu Test-Performance (MAP) | | ---- | :----: | | distilbert-base-uncased | 53.59 | | bert-base-uncased | 54.89 | | **distilroberta-base** | **56.16** | | roberta-base | 55.89 | Using mean pooling, with max_seq_length=32 and distilroberta-base model. | Batch Size | AskUbuntu Test-Performance (MAP) | | ---- | :----: | | 128 | 56.16 | | 256 | 56.63 | | **512** | **56.69** | Using max_seq_length=32, distilroberta-base model, and 512 batch size. | Pooling Mode | AskUbuntu Test-Performance (MAP) | | ---- | :----: | | **Mean pooling** | **56.69** | | CLS pooling | 56.56 | | Max pooling | 52.91 | **Note:** This is a re-implementation of SimCSE within sentence-transformers. For the official CT code, see: [princeton-nlp/SimCSE](https://github.com/princeton-nlp/SimCSE)