|
""" |
|
Tests that the pretrained models produce the correct scores on the STSbenchmark dataset |
|
""" |
|
import csv |
|
import gzip |
|
import os |
|
import unittest |
|
|
|
from torch.utils.data import DataLoader |
|
import logging |
|
from sentence_transformers import CrossEncoder, util, LoggingHandler |
|
from sentence_transformers.readers import InputExample |
|
from sentence_transformers.cross_encoder.evaluation import CECorrelationEvaluator |
|
|
|
|
|
|
|
class CrossEncoderTest(unittest.TestCase): |
|
def setUp(self): |
|
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz' |
|
if not os.path.exists(sts_dataset_path): |
|
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) |
|
|
|
|
|
self.stsb_train_samples = [] |
|
self.dev_samples = [] |
|
self.test_samples = [] |
|
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
score = float(row['score']) / 5.0 |
|
inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) |
|
|
|
if row['split'] == 'dev': |
|
self.dev_samples.append(inp_example) |
|
elif row['split'] == 'test': |
|
self.test_samples.append(inp_example) |
|
else: |
|
self.stsb_train_samples.append(inp_example) |
|
|
|
def evaluate_stsb_test(self, model, expected_score): |
|
evaluator = CECorrelationEvaluator.from_input_examples(self.test_samples, name='sts-test') |
|
score = evaluator(model)*100 |
|
print("STS-Test Performance: {:.2f} vs. exp: {:.2f}".format(score, expected_score)) |
|
assert score > expected_score or abs(score-expected_score) < 0.1 |
|
|
|
def test_pretrained_stsb(self): |
|
model = CrossEncoder("cross-encoder/stsb-distilroberta-base") |
|
self.evaluate_stsb_test(model, 87.92) |
|
|
|
def test_train_stsb(self): |
|
model = CrossEncoder('distilroberta-base', num_labels=1) |
|
train_dataloader = DataLoader(self.stsb_train_samples, shuffle=True, batch_size=16) |
|
model.fit(train_dataloader=train_dataloader, |
|
epochs=1, |
|
warmup_steps=int(len(train_dataloader)*0.1)) |
|
self.evaluate_stsb_test(model, 75) |
|
|
|
|
|
|
|
|
|
if "__main__" == __name__: |
|
unittest.main() |