SentenceTransformer / sentence_transformers /losses /MultipleNegativesSymmetricRankingLoss.py
lengocduc195's picture
pushNe
2359bda
import torch
from torch import nn, Tensor
from typing import Iterable, Dict
from ..SentenceTransformer import SentenceTransformer
from .. import util
class MultipleNegativesSymmetricRankingLoss(nn.Module):
"""
This loss is an adaptation of MultipleNegativesRankingLoss. MultipleNegativesRankingLoss computes the following loss:
For a given anchor and a list of candidates, find the positive candidate.
In MultipleNegativesSymmetricRankingLoss, we add another loss term: Given the positive and a list of all anchors,
find the correct (matching) anchor.
For the example of question-answering: You have (question, answer)-pairs. MultipleNegativesRankingLoss just computes
the loss to find the answer for a given question. MultipleNegativesSymmetricRankingLoss additionally computes the
loss to find the question for a given answer.
Note: If you pass triplets, the negative entry will be ignored. A anchor is just searched for the positive.
Example::
from sentence_transformers import SentenceTransformer, losses, InputExample
from torch.utils.data import DataLoader
model = SentenceTransformer('distilbert-base-uncased')
train_examples = [InputExample(texts=['Anchor 1', 'Positive 1']),
InputExample(texts=['Anchor 2', 'Positive 2'])]
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=32)
train_loss = losses.MultipleNegativesSymmetricRankingLoss(model=model)
"""
def __init__(self, model: SentenceTransformer, scale: float = 20.0, similarity_fct = util.cos_sim):
"""
:param model: SentenceTransformer model
:param scale: Output of similarity function is multiplied by scale value
:param similarity_fct: similarity function between sentence embeddings. By default, cos_sim. Can also be set to dot product (and then set scale to 1)
"""
super(MultipleNegativesSymmetricRankingLoss, self).__init__()
self.model = model
self.scale = scale
self.similarity_fct = similarity_fct
self.cross_entropy_loss = nn.CrossEntropyLoss()
def forward(self, sentence_features: Iterable[Dict[str, Tensor]], labels: Tensor):
reps = [self.model(sentence_feature)['sentence_embedding'] for sentence_feature in sentence_features]
anchor = reps[0]
candidates = torch.cat(reps[1:])
scores = self.similarity_fct(anchor, candidates) * self.scale
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=scores.device) # Example a[i] should match with b[i]
anchor_positive_scores = scores[:, 0:len(reps[1])]
forward_loss = self.cross_entropy_loss(scores, labels)
backward_loss = self.cross_entropy_loss(anchor_positive_scores.transpose(0, 1), labels)
return (forward_loss + backward_loss) / 2
def get_config_dict(self):
return {'scale': self.scale, 'similarity_fct': self.similarity_fct.__name__}