lengocduc195's picture
pushNe
2359bda
from sentence_transformers.evaluation import SentenceEvaluator
from sentence_transformers.util import batch_to_device
from sentence_transformers import SentenceTransformer
from typing import List, Tuple, Dict
import torch
import numpy as np
import logging
import os
import csv
logger = logging.getLogger(__name__)
class MSEEvaluatorFromDataFrame(SentenceEvaluator):
"""
Computes the mean squared error (x100) between the computed sentence embedding
and some target sentence embedding.
:param dataframe:
It must have the following format. Rows contains different, parallel sentences. Columns are the respective language codes
[{'en': 'My sentence', 'es': 'Sentence in Spanisch', 'fr': 'Sentence in French'...},
{'en': 'My second sentence', ....]
:param combinations:
Must be of the format [('en', 'es'), ('en', 'fr'), ...]
First entry in a tuple is the source language. The sentence in the respective language will be fetched from the dataframe and passed to the teacher model.
Second entry in a tuple the the target language. Sentence will be fetched from the dataframe and passed to the student model
"""
def __init__(self, dataframe: List[Dict[str, str]], teacher_model: SentenceTransformer, combinations: List[Tuple[str, str]], batch_size: int = 8, name='', write_csv: bool = True):
self.combinations = combinations
self.name = name
self.batch_size = batch_size
if name:
name = "_"+name
self.csv_file = "mse_evaluation" + name + "_results.csv"
self.csv_headers = ["epoch", "steps"]
self.write_csv = write_csv
self.data = {}
logger.info("Compute teacher embeddings")
all_source_sentences = set()
for src_lang, trg_lang in self.combinations:
src_sentences = []
trg_sentences = []
for row in dataframe:
if row[src_lang].strip() != "" and row[trg_lang].strip() != "":
all_source_sentences.add(row[src_lang])
src_sentences.append(row[src_lang])
trg_sentences.append(row[trg_lang])
self.data[(src_lang, trg_lang)] = (src_sentences, trg_sentences)
self.csv_headers.append("{}-{}".format(src_lang, trg_lang))
all_source_sentences = list(all_source_sentences)
all_src_embeddings = teacher_model.encode(all_source_sentences, batch_size=self.batch_size)
self.teacher_embeddings = {sent: emb for sent, emb in zip(all_source_sentences, all_src_embeddings)}
def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1):
model.eval()
mse_scores = []
for src_lang, trg_lang in self.combinations:
src_sentences, trg_sentences = self.data[(src_lang, trg_lang)]
src_embeddings = np.asarray([self.teacher_embeddings[sent] for sent in src_sentences])
trg_embeddings = np.asarray(model.encode(trg_sentences, batch_size=self.batch_size))
mse = ((src_embeddings - trg_embeddings) ** 2).mean()
mse *= 100
mse_scores.append(mse)
logger.info("MSE evaluation on {} dataset - {}-{}:".format(self.name, src_lang, trg_lang))
logger.info("MSE (*100):\t{:4f}".format(mse))
if output_path is not None and self.write_csv:
csv_path = os.path.join(output_path, self.csv_file)
output_file_exists = os.path.isfile(csv_path)
with open(csv_path, newline='', mode="a" if output_file_exists else 'w', encoding="utf-8") as f:
writer = csv.writer(f)
if not output_file_exists:
writer.writerow(self.csv_headers)
writer.writerow([epoch, steps]+mse_scores)
return -np.mean(mse_scores) #Return negative score as SentenceTransformers maximizes the performance