|
import torch |
|
from torch import Tensor |
|
from torch import nn |
|
from typing import Union, Tuple, List, Iterable, Dict |
|
import os |
|
import json |
|
import logging |
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
class WordWeights(nn.Module): |
|
"""This model can weight word embeddings, for example, with idf-values.""" |
|
|
|
def __init__(self, vocab: List[str], word_weights: Dict[str, float], unknown_word_weight: float = 1): |
|
""" |
|
|
|
:param vocab: |
|
Vocabulary of the tokenizer |
|
:param word_weights: |
|
Mapping of tokens to a float weight value. Words embeddings are multiplied by this float value. Tokens in word_weights must not be equal to the vocab (can contain more or less values) |
|
:param unknown_word_weight: |
|
Weight for words in vocab, that do not appear in the word_weights lookup. These can be for example rare words in the vocab, where no weight exists. |
|
""" |
|
super(WordWeights, self).__init__() |
|
self.config_keys = ['vocab', 'word_weights', 'unknown_word_weight'] |
|
self.vocab = vocab |
|
self.word_weights = word_weights |
|
self.unknown_word_weight = unknown_word_weight |
|
|
|
weights = [] |
|
num_unknown_words = 0 |
|
for word in vocab: |
|
weight = unknown_word_weight |
|
if word in word_weights: |
|
weight = word_weights[word] |
|
elif word.lower() in word_weights: |
|
weight = word_weights[word.lower()] |
|
else: |
|
num_unknown_words += 1 |
|
weights.append(weight) |
|
|
|
logger.info("{} of {} words without a weighting value. Set weight to {}".format(num_unknown_words, len(vocab), unknown_word_weight)) |
|
|
|
self.emb_layer = nn.Embedding(len(vocab), 1) |
|
self.emb_layer.load_state_dict({'weight': torch.FloatTensor(weights).unsqueeze(1)}) |
|
|
|
|
|
def forward(self, features: Dict[str, Tensor]): |
|
attention_mask = features['attention_mask'] |
|
token_embeddings = features['token_embeddings'] |
|
|
|
|
|
token_weights_raw = self.emb_layer(features['input_ids']).squeeze(-1) |
|
token_weights = token_weights_raw * attention_mask.float() |
|
token_weights_sum = torch.sum(token_weights, 1) |
|
|
|
|
|
token_weights_expanded = token_weights.unsqueeze(-1).expand(token_embeddings.size()) |
|
token_embeddings = token_embeddings * token_weights_expanded |
|
|
|
features.update({'token_embeddings': token_embeddings, 'token_weights_sum': token_weights_sum}) |
|
return features |
|
|
|
def get_config_dict(self): |
|
return {key: self.__dict__[key] for key in self.config_keys} |
|
|
|
def save(self, output_path): |
|
with open(os.path.join(output_path, 'config.json'), 'w') as fOut: |
|
json.dump(self.get_config_dict(), fOut, indent=2) |
|
|
|
@staticmethod |
|
def load(input_path): |
|
with open(os.path.join(input_path, 'config.json')) as fIn: |
|
config = json.load(fIn) |
|
|
|
return WordWeights(**config) |
|
|