|
from torch import nn |
|
from transformers import AutoModel, AutoTokenizer, AutoConfig, T5Config, MT5Config |
|
import json |
|
from typing import List, Dict, Optional, Union, Tuple |
|
import os |
|
|
|
|
|
class Transformer(nn.Module): |
|
"""Huggingface AutoModel to generate token embeddings. |
|
Loads the correct class, e.g. BERT / RoBERTa etc. |
|
|
|
:param model_name_or_path: Huggingface models name (https://huggingface.co/models) |
|
:param max_seq_length: Truncate any inputs longer than max_seq_length |
|
:param model_args: Arguments (key, value pairs) passed to the Huggingface Transformers model |
|
:param cache_dir: Cache dir for Huggingface Transformers to store/load models |
|
:param tokenizer_args: Arguments (key, value pairs) passed to the Huggingface Tokenizer model |
|
:param do_lower_case: If true, lowercases the input (independent if the model is cased or not) |
|
:param tokenizer_name_or_path: Name or path of the tokenizer. When None, then model_name_or_path is used |
|
""" |
|
def __init__(self, model_name_or_path: str, max_seq_length: Optional[int] = None, |
|
model_args: Dict = {}, cache_dir: Optional[str] = None, |
|
tokenizer_args: Dict = {}, do_lower_case: bool = False, |
|
tokenizer_name_or_path : str = None): |
|
super(Transformer, self).__init__() |
|
self.config_keys = ['max_seq_length', 'do_lower_case'] |
|
self.do_lower_case = do_lower_case |
|
|
|
config = AutoConfig.from_pretrained(model_name_or_path, **model_args, cache_dir=cache_dir) |
|
self._load_model(model_name_or_path, config, cache_dir, **model_args) |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path, cache_dir=cache_dir, **tokenizer_args) |
|
|
|
|
|
if max_seq_length is None: |
|
if hasattr(self.auto_model, "config") and hasattr(self.auto_model.config, "max_position_embeddings") and hasattr(self.tokenizer, "model_max_length"): |
|
max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length) |
|
|
|
self.max_seq_length = max_seq_length |
|
|
|
if tokenizer_name_or_path is not None: |
|
self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__ |
|
|
|
|
|
def _load_model(self, model_name_or_path, config, cache_dir, **model_args): |
|
"""Loads the transformer model""" |
|
if isinstance(config, T5Config): |
|
self._load_t5_model(model_name_or_path, config, cache_dir, **model_args) |
|
elif isinstance(config, MT5Config): |
|
self._load_mt5_model(model_name_or_path, config, cache_dir, **model_args) |
|
else: |
|
self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=config, cache_dir=cache_dir, **model_args) |
|
|
|
def _load_t5_model(self, model_name_or_path, config, cache_dir, **model_args): |
|
"""Loads the encoder model from T5""" |
|
from transformers import T5EncoderModel |
|
T5EncoderModel._keys_to_ignore_on_load_unexpected = ["decoder.*"] |
|
self.auto_model = T5EncoderModel.from_pretrained(model_name_or_path, config=config, cache_dir=cache_dir, **model_args) |
|
|
|
def _load_mt5_model(self, model_name_or_path, config, cache_dir, **model_args): |
|
"""Loads the encoder model from T5""" |
|
from transformers import MT5EncoderModel |
|
MT5EncoderModel._keys_to_ignore_on_load_unexpected = ["decoder.*"] |
|
self.auto_model = MT5EncoderModel.from_pretrained(model_name_or_path, config=config, cache_dir=cache_dir, **model_args) |
|
|
|
def __repr__(self): |
|
return "Transformer({}) with Transformer model: {} ".format(self.get_config_dict(), self.auto_model.__class__.__name__) |
|
|
|
def forward(self, features): |
|
"""Returns token_embeddings, cls_token""" |
|
trans_features = {'input_ids': features['input_ids'], 'attention_mask': features['attention_mask']} |
|
if 'token_type_ids' in features: |
|
trans_features['token_type_ids'] = features['token_type_ids'] |
|
|
|
output_states = self.auto_model(**trans_features, return_dict=False) |
|
output_tokens = output_states[0] |
|
|
|
features.update({'token_embeddings': output_tokens, 'attention_mask': features['attention_mask']}) |
|
|
|
if self.auto_model.config.output_hidden_states: |
|
all_layer_idx = 2 |
|
if len(output_states) < 3: |
|
all_layer_idx = 1 |
|
|
|
hidden_states = output_states[all_layer_idx] |
|
features.update({'all_layer_embeddings': hidden_states}) |
|
|
|
return features |
|
|
|
def get_word_embedding_dimension(self) -> int: |
|
return self.auto_model.config.hidden_size |
|
|
|
def tokenize(self, texts: Union[List[str], List[Dict], List[Tuple[str, str]]]): |
|
""" |
|
Tokenizes a text and maps tokens to token-ids |
|
""" |
|
output = {} |
|
if isinstance(texts[0], str): |
|
to_tokenize = [texts] |
|
elif isinstance(texts[0], dict): |
|
to_tokenize = [] |
|
output['text_keys'] = [] |
|
for lookup in texts: |
|
text_key, text = next(iter(lookup.items())) |
|
to_tokenize.append(text) |
|
output['text_keys'].append(text_key) |
|
to_tokenize = [to_tokenize] |
|
else: |
|
batch1, batch2 = [], [] |
|
for text_tuple in texts: |
|
batch1.append(text_tuple[0]) |
|
batch2.append(text_tuple[1]) |
|
to_tokenize = [batch1, batch2] |
|
|
|
|
|
to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize] |
|
|
|
|
|
if self.do_lower_case: |
|
to_tokenize = [[s.lower() for s in col] for col in to_tokenize] |
|
|
|
output.update(self.tokenizer(*to_tokenize, padding=True, truncation='longest_first', return_tensors="pt", max_length=self.max_seq_length)) |
|
return output |
|
|
|
|
|
def get_config_dict(self): |
|
return {key: self.__dict__[key] for key in self.config_keys} |
|
|
|
def save(self, output_path: str): |
|
self.auto_model.save_pretrained(output_path) |
|
self.tokenizer.save_pretrained(output_path) |
|
|
|
with open(os.path.join(output_path, 'sentence_bert_config.json'), 'w') as fOut: |
|
json.dump(self.get_config_dict(), fOut, indent=2) |
|
|
|
@staticmethod |
|
def load(input_path: str): |
|
|
|
for config_name in ['sentence_bert_config.json', 'sentence_roberta_config.json', 'sentence_distilbert_config.json', 'sentence_camembert_config.json', 'sentence_albert_config.json', 'sentence_xlm-roberta_config.json', 'sentence_xlnet_config.json']: |
|
sbert_config_path = os.path.join(input_path, config_name) |
|
if os.path.exists(sbert_config_path): |
|
break |
|
|
|
with open(sbert_config_path) as fIn: |
|
config = json.load(fIn) |
|
return Transformer(model_name_or_path=input_path, **config) |
|
|
|
|
|
|
|
|
|
|
|
|