|
import torch |
|
from torch import Tensor |
|
from torch import nn |
|
from torch import functional as F |
|
from typing import Union, Tuple, List, Iterable, Dict |
|
import os |
|
import json |
|
from ..util import fullname, import_from_string |
|
|
|
|
|
class Dense(nn.Module): |
|
"""Feed-forward function with activiation function. |
|
|
|
This layer takes a fixed-sized sentence embedding and passes it through a feed-forward layer. Can be used to generate deep averaging networks (DAN). |
|
|
|
:param in_features: Size of the input dimension |
|
:param out_features: Output size |
|
:param bias: Add a bias vector |
|
:param activation_function: Pytorch activation function applied on output |
|
:param init_weight: Initial value for the matrix of the linear layer |
|
:param init_bias: Initial value for the bias of the linear layer |
|
""" |
|
def __init__(self, in_features: int, out_features: int, bias: bool = True, activation_function=nn.Tanh(), init_weight: Tensor = None, init_bias: Tensor = None): |
|
super(Dense, self).__init__() |
|
self.in_features = in_features |
|
self.out_features = out_features |
|
self.bias = bias |
|
self.activation_function = activation_function |
|
self.linear = nn.Linear(in_features, out_features, bias=bias) |
|
|
|
if init_weight is not None: |
|
self.linear.weight = nn.Parameter(init_weight) |
|
|
|
if init_bias is not None: |
|
self.linear.bias = nn.Parameter(init_bias) |
|
|
|
def forward(self, features: Dict[str, Tensor]): |
|
features.update({'sentence_embedding': self.activation_function(self.linear(features['sentence_embedding']))}) |
|
return features |
|
|
|
def get_sentence_embedding_dimension(self) -> int: |
|
return self.out_features |
|
|
|
def get_config_dict(self): |
|
return {'in_features': self.in_features, 'out_features': self.out_features, 'bias': self.bias, 'activation_function': fullname(self.activation_function)} |
|
|
|
def save(self, output_path): |
|
with open(os.path.join(output_path, 'config.json'), 'w') as fOut: |
|
json.dump(self.get_config_dict(), fOut) |
|
|
|
torch.save(self.state_dict(), os.path.join(output_path, 'pytorch_model.bin')) |
|
|
|
def __repr__(self): |
|
return "Dense({})".format(self.get_config_dict()) |
|
|
|
@staticmethod |
|
def load(input_path): |
|
with open(os.path.join(input_path, 'config.json')) as fIn: |
|
config = json.load(fIn) |
|
|
|
config['activation_function'] = import_from_string(config['activation_function'])() |
|
model = Dense(**config) |
|
model.load_state_dict(torch.load(os.path.join(input_path, 'pytorch_model.bin'), map_location=torch.device('cpu'))) |
|
return model |
|
|