|
|
|
from sentence_transformers import SentenceTransformer, LoggingHandler |
|
from sentence_transformers import models, util, datasets, evaluation, losses |
|
import logging |
|
import os |
|
import gzip |
|
from torch.utils.data import DataLoader |
|
from datetime import datetime |
|
import sys |
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', |
|
level=logging.INFO, |
|
handlers=[LoggingHandler()]) |
|
|
|
|
|
|
|
askubuntu_folder = 'data/askubuntu' |
|
result_folder = 'output/askubuntu-tsdae-'+datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
batch_size = 8 |
|
|
|
|
|
for filename in ['text_tokenized.txt.gz', 'dev.txt', 'test.txt', 'train_random.txt']: |
|
filepath = os.path.join(askubuntu_folder, filename) |
|
if not os.path.exists(filepath): |
|
util.http_get('https://github.com/taolei87/askubuntu/raw/master/'+filename, filepath) |
|
|
|
|
|
corpus = {} |
|
dev_test_ids = set() |
|
with gzip.open(os.path.join(askubuntu_folder, 'text_tokenized.txt.gz'), 'rt', encoding='utf8') as fIn: |
|
for line in fIn: |
|
splits = line.strip().split("\t") |
|
id = splits[0] |
|
title = splits[1] |
|
corpus[id] = title |
|
|
|
|
|
def read_eval_dataset(filepath): |
|
dataset = [] |
|
with open(filepath) as fIn: |
|
for line in fIn: |
|
query_id, relevant_id, candidate_ids, bm25_scores = line.strip().split("\t") |
|
if len(relevant_id) == 0: |
|
continue |
|
|
|
relevant_id = relevant_id.split(" ") |
|
candidate_ids = candidate_ids.split(" ") |
|
negative_ids = set(candidate_ids) - set(relevant_id) |
|
dataset.append({ |
|
'query': corpus[query_id], |
|
'positive': [corpus[pid] for pid in relevant_id], |
|
'negative': [corpus[pid] for pid in negative_ids] |
|
}) |
|
dev_test_ids.add(query_id) |
|
dev_test_ids.update(candidate_ids) |
|
return dataset |
|
|
|
dev_dataset = read_eval_dataset(os.path.join(askubuntu_folder, 'dev.txt')) |
|
test_dataset = read_eval_dataset(os.path.join(askubuntu_folder, 'test.txt')) |
|
|
|
|
|
|
|
|
|
train_sentences = [] |
|
for id, sentence in corpus.items(): |
|
if id not in dev_test_ids: |
|
train_sentences.append(sentence) |
|
|
|
|
|
logging.info("{} train sentences".format(len(train_sentences))) |
|
|
|
|
|
model_name = sys.argv[1] if len(sys.argv) >= 2 else 'bert-base-uncased' |
|
word_embedding_model = models.Transformer(model_name) |
|
|
|
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(), 'cls') |
|
model = SentenceTransformer(modules=[word_embedding_model, pooling_model]) |
|
|
|
|
|
|
|
train_dataset = datasets.DenoisingAutoEncoderDataset(train_sentences) |
|
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True) |
|
train_loss = losses.DenoisingAutoEncoderLoss(model, decoder_name_or_path=model_name, tie_encoder_decoder=True) |
|
|
|
|
|
dev_evaluator = evaluation.RerankingEvaluator(dev_dataset, name='AskUbuntu dev') |
|
|
|
logging.info("Dev performance before training") |
|
dev_evaluator(model) |
|
|
|
total_steps = 20000 |
|
logging.info("Start training") |
|
model.fit( |
|
train_objectives=[(train_dataloader, train_loss)], |
|
evaluator=dev_evaluator, |
|
evaluation_steps=1000, |
|
epochs=1, |
|
steps_per_epoch=total_steps, |
|
weight_decay=0, |
|
scheduler='constantlr', |
|
optimizer_params={'lr': 3e-5}, |
|
output_path=result_folder, |
|
show_progress_bar=True |
|
) |
|
|
|
|
|
|
|
|