SentenceTransformer / examples /evaluation /evaluation_stsbenchmark.py
lengocduc195's picture
pushNe
2359bda
raw
history blame
2.13 kB
"""
This examples loads a pre-trained model and evaluates it on the STSbenchmark dataset
Usage:
python evaluation_stsbenchmark.py
OR
python evaluation_stsbenchmark.py model_name
"""
from sentence_transformers import SentenceTransformer, util, LoggingHandler, InputExample
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
import logging
import sys
import torch
import gzip
import os
import csv
script_folder_path = os.path.dirname(os.path.realpath(__file__))
#Limit torch to 4 threads
torch.set_num_threads(4)
#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
#### /print debug information to stdout
model_name = sys.argv[1] if len(sys.argv) > 1 else 'stsb-distilroberta-base-v2'
# Load a named sentence model (based on BERT). This will download the model from our server.
# Alternatively, you can also pass a filepath to SentenceTransformer()
model = SentenceTransformer(model_name)
sts_dataset_path = 'data/stsbenchmark.tsv.gz'
if not os.path.exists(sts_dataset_path):
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path)
train_samples = []
dev_samples = []
test_samples = []
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn:
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
for row in reader:
score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1
inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score)
if row['split'] == 'dev':
dev_samples.append(inp_example)
elif row['split'] == 'test':
test_samples.append(inp_example)
else:
train_samples.append(inp_example)
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
model.evaluate(evaluator)
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test')
model.evaluate(evaluator)