|
""" |
|
This examples loads a pre-trained model and evaluates it on the STSbenchmark dataset |
|
|
|
Usage: |
|
python evaluation_stsbenchmark.py |
|
OR |
|
python evaluation_stsbenchmark.py model_name |
|
""" |
|
from sentence_transformers import SentenceTransformer, util, LoggingHandler, InputExample |
|
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator |
|
import logging |
|
import sys |
|
import torch |
|
import gzip |
|
import os |
|
import csv |
|
|
|
script_folder_path = os.path.dirname(os.path.realpath(__file__)) |
|
|
|
|
|
torch.set_num_threads(4) |
|
|
|
|
|
logging.basicConfig(format='%(asctime)s - %(message)s', |
|
datefmt='%Y-%m-%d %H:%M:%S', |
|
level=logging.INFO, |
|
handlers=[LoggingHandler()]) |
|
|
|
|
|
model_name = sys.argv[1] if len(sys.argv) > 1 else 'stsb-distilroberta-base-v2' |
|
|
|
|
|
|
|
model = SentenceTransformer(model_name) |
|
|
|
|
|
sts_dataset_path = 'data/stsbenchmark.tsv.gz' |
|
|
|
if not os.path.exists(sts_dataset_path): |
|
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path) |
|
|
|
train_samples = [] |
|
dev_samples = [] |
|
test_samples = [] |
|
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn: |
|
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE) |
|
for row in reader: |
|
score = float(row['score']) / 5.0 |
|
inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score) |
|
|
|
if row['split'] == 'dev': |
|
dev_samples.append(inp_example) |
|
elif row['split'] == 'test': |
|
test_samples.append(inp_example) |
|
else: |
|
train_samples.append(inp_example) |
|
|
|
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev') |
|
model.evaluate(evaluator) |
|
|
|
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='sts-test') |
|
model.evaluate(evaluator) |
|
|