File size: 13,152 Bytes
2359bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from . import SentenceEvaluator
import torch
from torch import Tensor
import logging
from tqdm import tqdm, trange
from ..util import cos_sim, dot_score
import os
import numpy as np
from typing import List, Tuple, Dict, Set, Callable
import heapq



logger = logging.getLogger(__name__)

class InformationRetrievalEvaluator(SentenceEvaluator):
    """
    This class evaluates an Information Retrieval (IR) setting.

    Given a set of queries and a large corpus set. It will retrieve for each query the top-k most similar document. It measures
    Mean Reciprocal Rank (MRR), Recall@k, and Normalized Discounted Cumulative Gain (NDCG)
    """

    def __init__(self,
                 queries: Dict[str, str],  #qid => query
                 corpus: Dict[str, str],  #cid => doc
                 relevant_docs: Dict[str, Set[str]],  #qid => Set[cid]
                 corpus_chunk_size: int = 50000,
                 mrr_at_k: List[int] = [10],
                 ndcg_at_k: List[int] = [10],
                 accuracy_at_k: List[int] = [1, 3, 5, 10],
                 precision_recall_at_k: List[int] = [1, 3, 5, 10],
                 map_at_k: List[int] = [100],
                 show_progress_bar: bool = False,
                 batch_size: int = 32,
                 name: str = '',
                 write_csv: bool = True,
                 score_functions: List[Callable[[Tensor, Tensor], Tensor] ] = {'cos_sim': cos_sim, 'dot_score': dot_score},       #Score function, higher=more similar
                 main_score_function: str = None
                 ):

        self.queries_ids = []
        for qid in queries:
            if qid in relevant_docs and len(relevant_docs[qid]) > 0:
                self.queries_ids.append(qid)

        self.queries = [queries[qid] for qid in self.queries_ids]

        self.corpus_ids = list(corpus.keys())
        self.corpus = [corpus[cid] for cid in self.corpus_ids]

        self.relevant_docs = relevant_docs
        self.corpus_chunk_size = corpus_chunk_size
        self.mrr_at_k = mrr_at_k
        self.ndcg_at_k = ndcg_at_k
        self.accuracy_at_k = accuracy_at_k
        self.precision_recall_at_k = precision_recall_at_k
        self.map_at_k = map_at_k

        self.show_progress_bar = show_progress_bar
        self.batch_size = batch_size
        self.name = name
        self.write_csv = write_csv
        self.score_functions = score_functions
        self.score_function_names = sorted(list(self.score_functions.keys()))
        self.main_score_function = main_score_function

        if name:
            name = "_" + name

        self.csv_file: str = "Information-Retrieval_evaluation" + name + "_results.csv"
        self.csv_headers = ["epoch", "steps"]

        for score_name in self.score_function_names:
            for k in accuracy_at_k:
                self.csv_headers.append("{}-Accuracy@{}".format(score_name, k))

            for k in precision_recall_at_k:
                self.csv_headers.append("{}-Precision@{}".format(score_name, k))
                self.csv_headers.append("{}-Recall@{}".format(score_name, k))

            for k in mrr_at_k:
                self.csv_headers.append("{}-MRR@{}".format(score_name, k))

            for k in ndcg_at_k:
                self.csv_headers.append("{}-NDCG@{}".format(score_name, k))

            for k in map_at_k:
                self.csv_headers.append("{}-MAP@{}".format(score_name, k))

    def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs) -> float:
        if epoch != -1:
            out_txt = " after epoch {}:".format(epoch) if steps == -1 else " in epoch {} after {} steps:".format(epoch, steps)
        else:
            out_txt = ":"

        logger.info("Information Retrieval Evaluation on " + self.name + " dataset" + out_txt)

        scores = self.compute_metrices(model, *args, **kwargs)

        # Write results to disc
        if output_path is not None and self.write_csv:
            csv_path = os.path.join(output_path, self.csv_file)
            if not os.path.isfile(csv_path):
                fOut = open(csv_path, mode="w", encoding="utf-8")
                fOut.write(",".join(self.csv_headers))
                fOut.write("\n")

            else:
                fOut = open(csv_path, mode="a", encoding="utf-8")

            output_data = [epoch, steps]
            for name in self.score_function_names:
                for k in self.accuracy_at_k:
                    output_data.append(scores[name]['accuracy@k'][k])

                for k in self.precision_recall_at_k:
                    output_data.append(scores[name]['precision@k'][k])
                    output_data.append(scores[name]['recall@k'][k])

                for k in self.mrr_at_k:
                    output_data.append(scores[name]['mrr@k'][k])

                for k in self.ndcg_at_k:
                    output_data.append(scores[name]['ndcg@k'][k])

                for k in self.map_at_k:
                    output_data.append(scores[name]['map@k'][k])

            fOut.write(",".join(map(str, output_data)))
            fOut.write("\n")
            fOut.close()

        if self.main_score_function is None:
            return max([scores[name]['map@k'][max(self.map_at_k)] for name in self.score_function_names])
        else:
            return scores[self.main_score_function]['map@k'][max(self.map_at_k)]

    def compute_metrices(self, model, corpus_model = None, corpus_embeddings: Tensor = None) -> Dict[str, float]:
        if corpus_model is None:
            corpus_model = model

        max_k = max(max(self.mrr_at_k), max(self.ndcg_at_k), max(self.accuracy_at_k), max(self.precision_recall_at_k), max(self.map_at_k))

        # Compute embedding for the queries
        query_embeddings = model.encode(self.queries, show_progress_bar=self.show_progress_bar, batch_size=self.batch_size, convert_to_tensor=True)

        queries_result_list = {}
        for name in self.score_functions:
            queries_result_list[name] = [[] for _ in range(len(query_embeddings))]

        #Iterate over chunks of the corpus
        for corpus_start_idx in trange(0, len(self.corpus), self.corpus_chunk_size, desc='Corpus Chunks', disable=not self.show_progress_bar):
            corpus_end_idx = min(corpus_start_idx + self.corpus_chunk_size, len(self.corpus))

            #Encode chunk of corpus
            if corpus_embeddings is None:
                sub_corpus_embeddings = corpus_model.encode(self.corpus[corpus_start_idx:corpus_end_idx], show_progress_bar=False, batch_size=self.batch_size, convert_to_tensor=True)
            else:
                sub_corpus_embeddings = corpus_embeddings[corpus_start_idx:corpus_end_idx]

            #Compute cosine similarites
            for name, score_function in self.score_functions.items():
                pair_scores = score_function(query_embeddings, sub_corpus_embeddings)

                #Get top-k values
                pair_scores_top_k_values, pair_scores_top_k_idx = torch.topk(pair_scores, min(max_k, len(pair_scores[0])), dim=1, largest=True, sorted=False)
                pair_scores_top_k_values = pair_scores_top_k_values.cpu().tolist()
                pair_scores_top_k_idx = pair_scores_top_k_idx.cpu().tolist()

                for query_itr in range(len(query_embeddings)):
                    for sub_corpus_id, score in zip(pair_scores_top_k_idx[query_itr], pair_scores_top_k_values[query_itr]):
                        corpus_id = self.corpus_ids[corpus_start_idx+sub_corpus_id]
                        if len(queries_result_list[name][query_itr]) < max_k:
                            heapq.heappush(queries_result_list[name][query_itr], (score, corpus_id))  # heaqp tracks the quantity of the first element in the tuple
                        else:
                            heapq.heappushpop(queries_result_list[name][query_itr], (score, corpus_id))

        for name in queries_result_list:
            for query_itr in range(len(queries_result_list[name])):
                for doc_itr in range(len(queries_result_list[name][query_itr])):
                    score, corpus_id = queries_result_list[name][query_itr][doc_itr]
                    queries_result_list[name][query_itr][doc_itr] = {'corpus_id': corpus_id, 'score': score}

        logger.info("Queries: {}".format(len(self.queries)))
        logger.info("Corpus: {}\n".format(len(self.corpus)))

        #Compute scores
        scores = {name: self.compute_metrics(queries_result_list[name]) for name in self.score_functions}

        #Output
        for name in self.score_function_names:
            logger.info("Score-Function: {}".format(name))
            self.output_scores(scores[name])

        return scores


    def compute_metrics(self, queries_result_list: List[object]):
        # Init score computation values
        num_hits_at_k = {k: 0 for k in self.accuracy_at_k}
        precisions_at_k = {k: [] for k in self.precision_recall_at_k}
        recall_at_k = {k: [] for k in self.precision_recall_at_k}
        MRR = {k: 0 for k in self.mrr_at_k}
        ndcg = {k: [] for k in self.ndcg_at_k}
        AveP_at_k = {k: [] for k in self.map_at_k}

        # Compute scores on results
        for query_itr in range(len(queries_result_list)):
            query_id = self.queries_ids[query_itr]

            # Sort scores
            top_hits = sorted(queries_result_list[query_itr], key=lambda x: x['score'], reverse=True)
            query_relevant_docs = self.relevant_docs[query_id]

            # Accuracy@k - We count the result correct, if at least one relevant doc is accross the top-k documents
            for k_val in self.accuracy_at_k:
                for hit in top_hits[0:k_val]:
                    if hit['corpus_id'] in query_relevant_docs:
                        num_hits_at_k[k_val] += 1
                        break

            # Precision and Recall@k
            for k_val in self.precision_recall_at_k:
                num_correct = 0
                for hit in top_hits[0:k_val]:
                    if hit['corpus_id'] in query_relevant_docs:
                        num_correct += 1

                precisions_at_k[k_val].append(num_correct / k_val)
                recall_at_k[k_val].append(num_correct / len(query_relevant_docs))

            # MRR@k
            for k_val in self.mrr_at_k:
                for rank, hit in enumerate(top_hits[0:k_val]):
                    if hit['corpus_id'] in query_relevant_docs:
                        MRR[k_val] += 1.0 / (rank + 1)
                        break

            # NDCG@k
            for k_val in self.ndcg_at_k:
                predicted_relevance = [1 if top_hit['corpus_id'] in query_relevant_docs else 0 for top_hit in top_hits[0:k_val]]
                true_relevances = [1] * len(query_relevant_docs)

                ndcg_value = self.compute_dcg_at_k(predicted_relevance, k_val) / self.compute_dcg_at_k(true_relevances, k_val)
                ndcg[k_val].append(ndcg_value)

            # MAP@k
            for k_val in self.map_at_k:
                num_correct = 0
                sum_precisions = 0

                for rank, hit in enumerate(top_hits[0:k_val]):
                    if hit['corpus_id'] in query_relevant_docs:
                        num_correct += 1
                        sum_precisions += num_correct / (rank + 1)

                avg_precision = sum_precisions / min(k_val, len(query_relevant_docs))
                AveP_at_k[k_val].append(avg_precision)

        # Compute averages
        for k in num_hits_at_k:
            num_hits_at_k[k] /= len(self.queries)

        for k in precisions_at_k:
            precisions_at_k[k] = np.mean(precisions_at_k[k])

        for k in recall_at_k:
            recall_at_k[k] = np.mean(recall_at_k[k])

        for k in ndcg:
            ndcg[k] = np.mean(ndcg[k])

        for k in MRR:
            MRR[k] /= len(self.queries)

        for k in AveP_at_k:
            AveP_at_k[k] = np.mean(AveP_at_k[k])


        return {'accuracy@k': num_hits_at_k, 'precision@k': precisions_at_k, 'recall@k': recall_at_k, 'ndcg@k': ndcg, 'mrr@k': MRR, 'map@k': AveP_at_k}


    def output_scores(self, scores):
        for k in scores['accuracy@k']:
            logger.info("Accuracy@{}: {:.2f}%".format(k, scores['accuracy@k'][k]*100))

        for k in scores['precision@k']:
            logger.info("Precision@{}: {:.2f}%".format(k, scores['precision@k'][k]*100))

        for k in scores['recall@k']:
            logger.info("Recall@{}: {:.2f}%".format(k, scores['recall@k'][k]*100))

        for k in scores['mrr@k']:
            logger.info("MRR@{}: {:.4f}".format(k, scores['mrr@k'][k]))

        for k in scores['ndcg@k']:
            logger.info("NDCG@{}: {:.4f}".format(k, scores['ndcg@k'][k]))

        for k in scores['map@k']:
            logger.info("MAP@{}: {:.4f}".format(k, scores['map@k'][k]))


    @staticmethod
    def compute_dcg_at_k(relevances, k):
        dcg = 0
        for i in range(min(len(relevances), k)):
            dcg += relevances[i] / np.log2(i + 2)  #+2 as we start our idx at 0
        return dcg