File size: 13,152 Bytes
2359bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
from . import SentenceEvaluator
import torch
from torch import Tensor
import logging
from tqdm import tqdm, trange
from ..util import cos_sim, dot_score
import os
import numpy as np
from typing import List, Tuple, Dict, Set, Callable
import heapq
logger = logging.getLogger(__name__)
class InformationRetrievalEvaluator(SentenceEvaluator):
"""
This class evaluates an Information Retrieval (IR) setting.
Given a set of queries and a large corpus set. It will retrieve for each query the top-k most similar document. It measures
Mean Reciprocal Rank (MRR), Recall@k, and Normalized Discounted Cumulative Gain (NDCG)
"""
def __init__(self,
queries: Dict[str, str], #qid => query
corpus: Dict[str, str], #cid => doc
relevant_docs: Dict[str, Set[str]], #qid => Set[cid]
corpus_chunk_size: int = 50000,
mrr_at_k: List[int] = [10],
ndcg_at_k: List[int] = [10],
accuracy_at_k: List[int] = [1, 3, 5, 10],
precision_recall_at_k: List[int] = [1, 3, 5, 10],
map_at_k: List[int] = [100],
show_progress_bar: bool = False,
batch_size: int = 32,
name: str = '',
write_csv: bool = True,
score_functions: List[Callable[[Tensor, Tensor], Tensor] ] = {'cos_sim': cos_sim, 'dot_score': dot_score}, #Score function, higher=more similar
main_score_function: str = None
):
self.queries_ids = []
for qid in queries:
if qid in relevant_docs and len(relevant_docs[qid]) > 0:
self.queries_ids.append(qid)
self.queries = [queries[qid] for qid in self.queries_ids]
self.corpus_ids = list(corpus.keys())
self.corpus = [corpus[cid] for cid in self.corpus_ids]
self.relevant_docs = relevant_docs
self.corpus_chunk_size = corpus_chunk_size
self.mrr_at_k = mrr_at_k
self.ndcg_at_k = ndcg_at_k
self.accuracy_at_k = accuracy_at_k
self.precision_recall_at_k = precision_recall_at_k
self.map_at_k = map_at_k
self.show_progress_bar = show_progress_bar
self.batch_size = batch_size
self.name = name
self.write_csv = write_csv
self.score_functions = score_functions
self.score_function_names = sorted(list(self.score_functions.keys()))
self.main_score_function = main_score_function
if name:
name = "_" + name
self.csv_file: str = "Information-Retrieval_evaluation" + name + "_results.csv"
self.csv_headers = ["epoch", "steps"]
for score_name in self.score_function_names:
for k in accuracy_at_k:
self.csv_headers.append("{}-Accuracy@{}".format(score_name, k))
for k in precision_recall_at_k:
self.csv_headers.append("{}-Precision@{}".format(score_name, k))
self.csv_headers.append("{}-Recall@{}".format(score_name, k))
for k in mrr_at_k:
self.csv_headers.append("{}-MRR@{}".format(score_name, k))
for k in ndcg_at_k:
self.csv_headers.append("{}-NDCG@{}".format(score_name, k))
for k in map_at_k:
self.csv_headers.append("{}-MAP@{}".format(score_name, k))
def __call__(self, model, output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs) -> float:
if epoch != -1:
out_txt = " after epoch {}:".format(epoch) if steps == -1 else " in epoch {} after {} steps:".format(epoch, steps)
else:
out_txt = ":"
logger.info("Information Retrieval Evaluation on " + self.name + " dataset" + out_txt)
scores = self.compute_metrices(model, *args, **kwargs)
# Write results to disc
if output_path is not None and self.write_csv:
csv_path = os.path.join(output_path, self.csv_file)
if not os.path.isfile(csv_path):
fOut = open(csv_path, mode="w", encoding="utf-8")
fOut.write(",".join(self.csv_headers))
fOut.write("\n")
else:
fOut = open(csv_path, mode="a", encoding="utf-8")
output_data = [epoch, steps]
for name in self.score_function_names:
for k in self.accuracy_at_k:
output_data.append(scores[name]['accuracy@k'][k])
for k in self.precision_recall_at_k:
output_data.append(scores[name]['precision@k'][k])
output_data.append(scores[name]['recall@k'][k])
for k in self.mrr_at_k:
output_data.append(scores[name]['mrr@k'][k])
for k in self.ndcg_at_k:
output_data.append(scores[name]['ndcg@k'][k])
for k in self.map_at_k:
output_data.append(scores[name]['map@k'][k])
fOut.write(",".join(map(str, output_data)))
fOut.write("\n")
fOut.close()
if self.main_score_function is None:
return max([scores[name]['map@k'][max(self.map_at_k)] for name in self.score_function_names])
else:
return scores[self.main_score_function]['map@k'][max(self.map_at_k)]
def compute_metrices(self, model, corpus_model = None, corpus_embeddings: Tensor = None) -> Dict[str, float]:
if corpus_model is None:
corpus_model = model
max_k = max(max(self.mrr_at_k), max(self.ndcg_at_k), max(self.accuracy_at_k), max(self.precision_recall_at_k), max(self.map_at_k))
# Compute embedding for the queries
query_embeddings = model.encode(self.queries, show_progress_bar=self.show_progress_bar, batch_size=self.batch_size, convert_to_tensor=True)
queries_result_list = {}
for name in self.score_functions:
queries_result_list[name] = [[] for _ in range(len(query_embeddings))]
#Iterate over chunks of the corpus
for corpus_start_idx in trange(0, len(self.corpus), self.corpus_chunk_size, desc='Corpus Chunks', disable=not self.show_progress_bar):
corpus_end_idx = min(corpus_start_idx + self.corpus_chunk_size, len(self.corpus))
#Encode chunk of corpus
if corpus_embeddings is None:
sub_corpus_embeddings = corpus_model.encode(self.corpus[corpus_start_idx:corpus_end_idx], show_progress_bar=False, batch_size=self.batch_size, convert_to_tensor=True)
else:
sub_corpus_embeddings = corpus_embeddings[corpus_start_idx:corpus_end_idx]
#Compute cosine similarites
for name, score_function in self.score_functions.items():
pair_scores = score_function(query_embeddings, sub_corpus_embeddings)
#Get top-k values
pair_scores_top_k_values, pair_scores_top_k_idx = torch.topk(pair_scores, min(max_k, len(pair_scores[0])), dim=1, largest=True, sorted=False)
pair_scores_top_k_values = pair_scores_top_k_values.cpu().tolist()
pair_scores_top_k_idx = pair_scores_top_k_idx.cpu().tolist()
for query_itr in range(len(query_embeddings)):
for sub_corpus_id, score in zip(pair_scores_top_k_idx[query_itr], pair_scores_top_k_values[query_itr]):
corpus_id = self.corpus_ids[corpus_start_idx+sub_corpus_id]
if len(queries_result_list[name][query_itr]) < max_k:
heapq.heappush(queries_result_list[name][query_itr], (score, corpus_id)) # heaqp tracks the quantity of the first element in the tuple
else:
heapq.heappushpop(queries_result_list[name][query_itr], (score, corpus_id))
for name in queries_result_list:
for query_itr in range(len(queries_result_list[name])):
for doc_itr in range(len(queries_result_list[name][query_itr])):
score, corpus_id = queries_result_list[name][query_itr][doc_itr]
queries_result_list[name][query_itr][doc_itr] = {'corpus_id': corpus_id, 'score': score}
logger.info("Queries: {}".format(len(self.queries)))
logger.info("Corpus: {}\n".format(len(self.corpus)))
#Compute scores
scores = {name: self.compute_metrics(queries_result_list[name]) for name in self.score_functions}
#Output
for name in self.score_function_names:
logger.info("Score-Function: {}".format(name))
self.output_scores(scores[name])
return scores
def compute_metrics(self, queries_result_list: List[object]):
# Init score computation values
num_hits_at_k = {k: 0 for k in self.accuracy_at_k}
precisions_at_k = {k: [] for k in self.precision_recall_at_k}
recall_at_k = {k: [] for k in self.precision_recall_at_k}
MRR = {k: 0 for k in self.mrr_at_k}
ndcg = {k: [] for k in self.ndcg_at_k}
AveP_at_k = {k: [] for k in self.map_at_k}
# Compute scores on results
for query_itr in range(len(queries_result_list)):
query_id = self.queries_ids[query_itr]
# Sort scores
top_hits = sorted(queries_result_list[query_itr], key=lambda x: x['score'], reverse=True)
query_relevant_docs = self.relevant_docs[query_id]
# Accuracy@k - We count the result correct, if at least one relevant doc is accross the top-k documents
for k_val in self.accuracy_at_k:
for hit in top_hits[0:k_val]:
if hit['corpus_id'] in query_relevant_docs:
num_hits_at_k[k_val] += 1
break
# Precision and Recall@k
for k_val in self.precision_recall_at_k:
num_correct = 0
for hit in top_hits[0:k_val]:
if hit['corpus_id'] in query_relevant_docs:
num_correct += 1
precisions_at_k[k_val].append(num_correct / k_val)
recall_at_k[k_val].append(num_correct / len(query_relevant_docs))
# MRR@k
for k_val in self.mrr_at_k:
for rank, hit in enumerate(top_hits[0:k_val]):
if hit['corpus_id'] in query_relevant_docs:
MRR[k_val] += 1.0 / (rank + 1)
break
# NDCG@k
for k_val in self.ndcg_at_k:
predicted_relevance = [1 if top_hit['corpus_id'] in query_relevant_docs else 0 for top_hit in top_hits[0:k_val]]
true_relevances = [1] * len(query_relevant_docs)
ndcg_value = self.compute_dcg_at_k(predicted_relevance, k_val) / self.compute_dcg_at_k(true_relevances, k_val)
ndcg[k_val].append(ndcg_value)
# MAP@k
for k_val in self.map_at_k:
num_correct = 0
sum_precisions = 0
for rank, hit in enumerate(top_hits[0:k_val]):
if hit['corpus_id'] in query_relevant_docs:
num_correct += 1
sum_precisions += num_correct / (rank + 1)
avg_precision = sum_precisions / min(k_val, len(query_relevant_docs))
AveP_at_k[k_val].append(avg_precision)
# Compute averages
for k in num_hits_at_k:
num_hits_at_k[k] /= len(self.queries)
for k in precisions_at_k:
precisions_at_k[k] = np.mean(precisions_at_k[k])
for k in recall_at_k:
recall_at_k[k] = np.mean(recall_at_k[k])
for k in ndcg:
ndcg[k] = np.mean(ndcg[k])
for k in MRR:
MRR[k] /= len(self.queries)
for k in AveP_at_k:
AveP_at_k[k] = np.mean(AveP_at_k[k])
return {'accuracy@k': num_hits_at_k, 'precision@k': precisions_at_k, 'recall@k': recall_at_k, 'ndcg@k': ndcg, 'mrr@k': MRR, 'map@k': AveP_at_k}
def output_scores(self, scores):
for k in scores['accuracy@k']:
logger.info("Accuracy@{}: {:.2f}%".format(k, scores['accuracy@k'][k]*100))
for k in scores['precision@k']:
logger.info("Precision@{}: {:.2f}%".format(k, scores['precision@k'][k]*100))
for k in scores['recall@k']:
logger.info("Recall@{}: {:.2f}%".format(k, scores['recall@k'][k]*100))
for k in scores['mrr@k']:
logger.info("MRR@{}: {:.4f}".format(k, scores['mrr@k'][k]))
for k in scores['ndcg@k']:
logger.info("NDCG@{}: {:.4f}".format(k, scores['ndcg@k'][k]))
for k in scores['map@k']:
logger.info("MAP@{}: {:.4f}".format(k, scores['map@k'][k]))
@staticmethod
def compute_dcg_at_k(relevances, k):
dcg = 0
for i in range(min(len(relevances), k)):
dcg += relevances[i] / np.log2(i + 2) #+2 as we start our idx at 0
return dcg
|