File size: 6,607 Bytes
2359bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
"""
This example uses Approximate Nearest Neighbor Search (ANN) with FAISS (https://github.com/facebookresearch/faiss).
Searching a large corpus with Millions of embeddings can be time-consuming. To speed this up,
ANN can index the existent vectors. For a new query vector, this index can be used to find the nearest neighbors.
This nearest neighbor search is not perfect, i.e., it might not perfectly find all top-k nearest neighbors.
In this example, we use FAISS with an inverse flat index (IndexIVFFlat). It learns to partition the corpus embeddings
into different cluster (number is defined by n_clusters). At search time, the matching cluster for query is found and only vectors
in this cluster must be search for nearest neighbors.
This script will compare the result from ANN with exact nearest neighbor search and output a Recall@k value
as well as the missing results in the top-k hits list.
See the FAISS repository, how to install FAISS.
As dataset, we use the Quora Duplicate Questions dataset, which contains about 500k questions (only 100k are used):
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs.
As embeddings model, we use the SBERT model 'quora-distilbert-multilingual',
that it aligned for 100 languages. I.e., you can type in a question in various languages and it will
return the closest questions in the corpus (questions in the corpus are mainly in English).
"""
from sentence_transformers import SentenceTransformer, util
import os
import csv
import pickle
import time
import faiss
import numpy as np
model_name = 'quora-distilbert-multilingual'
model = SentenceTransformer(model_name)
url = "http://qim.fs.quoracdn.net/quora_duplicate_questions.tsv"
dataset_path = "quora_duplicate_questions.tsv"
max_corpus_size = 100000
embedding_cache_path = 'quora-embeddings-{}-size-{}.pkl'.format(model_name.replace('/', '_'), max_corpus_size)
embedding_size = 768 #Size of embeddings
top_k_hits = 10 #Output k hits
#Defining our FAISS index
#Number of clusters used for faiss. Select a value 4*sqrt(N) to 16*sqrt(N) - https://github.com/facebookresearch/faiss/wiki/Guidelines-to-choose-an-index
n_clusters = 1024
#We use Inner Product (dot-product) as Index. We will normalize our vectors to unit length, then is Inner Product equal to cosine similarity
quantizer = faiss.IndexFlatIP(embedding_size)
index = faiss.IndexIVFFlat(quantizer, embedding_size, n_clusters, faiss.METRIC_INNER_PRODUCT)
#Number of clusters to explorer at search time. We will search for nearest neighbors in 3 clusters.
index.nprobe = 3
#Check if embedding cache path exists
if not os.path.exists(embedding_cache_path):
# Check if the dataset exists. If not, download and extract
# Download dataset if needed
if not os.path.exists(dataset_path):
print("Download dataset")
util.http_get(url, dataset_path)
# Get all unique sentences from the file
corpus_sentences = set()
with open(dataset_path, encoding='utf8') as fIn:
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_MINIMAL)
for row in reader:
corpus_sentences.add(row['question1'])
if len(corpus_sentences) >= max_corpus_size:
break
corpus_sentences.add(row['question2'])
if len(corpus_sentences) >= max_corpus_size:
break
corpus_sentences = list(corpus_sentences)
print("Encode the corpus. This might take a while")
corpus_embeddings = model.encode(corpus_sentences, show_progress_bar=True, convert_to_numpy=True)
print("Store file on disc")
with open(embedding_cache_path, "wb") as fOut:
pickle.dump({'sentences': corpus_sentences, 'embeddings': corpus_embeddings}, fOut)
else:
print("Load pre-computed embeddings from disc")
with open(embedding_cache_path, "rb") as fIn:
cache_data = pickle.load(fIn)
corpus_sentences = cache_data['sentences']
corpus_embeddings = cache_data['embeddings']
### Create the FAISS index
print("Start creating FAISS index")
# First, we need to normalize vectors to unit length
corpus_embeddings = corpus_embeddings / np.linalg.norm(corpus_embeddings, axis=1)[:, None]
# Then we train the index to find a suitable clustering
index.train(corpus_embeddings)
# Finally we add all embeddings to the index
index.add(corpus_embeddings)
######### Search in the index ###########
print("Corpus loaded with {} sentences / embeddings".format(len(corpus_sentences)))
while True:
inp_question = input("Please enter a question: ")
start_time = time.time()
question_embedding = model.encode(inp_question)
#FAISS works with inner product (dot product). When we normalize vectors to unit length, inner product is equal to cosine similarity
question_embedding = question_embedding / np.linalg.norm(question_embedding)
question_embedding = np.expand_dims(question_embedding, axis=0)
# Search in FAISS. It returns a matrix with distances and corpus ids.
distances, corpus_ids = index.search(question_embedding, top_k_hits)
# We extract corpus ids and scores for the first query
hits = [{'corpus_id': id, 'score': score} for id, score in zip(corpus_ids[0], distances[0])]
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
end_time = time.time()
print("Input question:", inp_question)
print("Results (after {:.3f} seconds):".format(end_time-start_time))
for hit in hits[0:top_k_hits]:
print("\t{:.3f}\t{}".format(hit['score'], corpus_sentences[hit['corpus_id']]))
# Approximate Nearest Neighbor (ANN) is not exact, it might miss entries with high cosine similarity
# Here, we compute the recall of ANN compared to the exact results
correct_hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k_hits)[0]
correct_hits_ids = set([hit['corpus_id'] for hit in correct_hits])
ann_corpus_ids = set([hit['corpus_id'] for hit in hits])
if len(ann_corpus_ids) != len(correct_hits_ids):
print("Approximate Nearest Neighbor returned a different number of results than expected")
recall = len(ann_corpus_ids.intersection(correct_hits_ids)) / len(correct_hits_ids)
print("\nApproximate Nearest Neighbor Recall@{}: {:.2f}".format(top_k_hits, recall * 100))
if recall < 1:
print("Missing results:")
for hit in correct_hits[0:top_k_hits]:
if hit['corpus_id'] not in ann_corpus_ids:
print("\t{:.3f}\t{}".format(hit['score'], corpus_sentences[hit['corpus_id']]))
print("\n\n========\n")
|