File size: 7,790 Bytes
2359bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""
This script tests the approach on the BUCC 2018 shared task on finding parallel sentences:
https://comparable.limsi.fr/bucc2018/bucc2018-task.html

You can download the necessary files from there.

We have used it in our paper (https://arxiv.org/pdf/2004.09813.pdf) in Section 4.2 to evaluate different multilingual models.

This script requires that you have FAISS installed:
https://github.com/facebookresearch/faiss
"""
from sentence_transformers import SentenceTransformer, models
from collections import defaultdict
import os
import pickle
from sklearn.decomposition import PCA
import torch
from bitext_mining_utils import *

#Model we want to use for bitext mining. LaBSE achieves state-of-the-art performance
model_name = 'LaBSE'
model = SentenceTransformer(model_name)

#Intput files for BUCC2018 shared task
source_file = "bucc2018/de-en/de-en.training.de"
target_file = "bucc2018/de-en/de-en.training.en"
labels_file = "bucc2018/de-en/de-en.training.gold"



# We base the scoring on k nearest neighbors for each element
knn_neighbors = 4

# Min score for text pairs. Note, score can be larger than 1
min_threshold = 1

#Do we want to use exact search of approximate nearest neighbor search (ANN)
#Exact search: Slower, but we don't miss any parallel sentences
#ANN: Faster, but the recall will be lower
use_ann_search = True

#Number of clusters for ANN. Optimal number depends on dataset size
ann_num_clusters = 32768

#How many cluster to explorer for search. Higher number = better recall, slower
ann_num_cluster_probe = 5

#To save memory, we can use PCA to reduce the dimensionality from 768 to for example 128 dimensions
#The encoded embeddings will hence require 6 times less memory. However, we observe a small drop in performance.
use_pca = False
pca_dimensions = 128

#We store the embeddings on disc, so that they can later be loaded from disc
source_embedding_file = '{}_{}_{}.emb'.format(model_name, os.path.basename(source_file), pca_dimensions if use_pca else model.get_sentence_embedding_dimension())
target_embedding_file = '{}_{}_{}.emb'.format(model_name, os.path.basename(target_file), pca_dimensions if use_pca else model.get_sentence_embedding_dimension())


#Use PCA to reduce the dimensionality of the sentence embedding model
if use_pca:
    # We use a smaller number of training sentences to learn the PCA
    train_sent = []
    num_train_sent = 20000

    with open(source_file, encoding='utf8') as fSource, open(target_file, encoding='utf8') as fTarget:
        for line_source, line_target in zip(fSource, fTarget):
            id, sentence = line_source.strip().split("\t", maxsplit=1)
            train_sent.append(sentence)

            id, sentence = line_target.strip().split("\t", maxsplit=1)
            train_sent.append(sentence)

            if len(train_sent) >= num_train_sent:
                break

    print("Encode training embeddings for PCA")
    train_matrix = model.encode(train_sent, show_progress_bar=True, convert_to_numpy=True)
    pca = PCA(n_components=pca_dimensions)
    pca.fit(train_matrix)

    dense = models.Dense(in_features=model.get_sentence_embedding_dimension(), out_features=pca_dimensions, bias=False, activation_function=torch.nn.Identity())
    dense.linear.weight = torch.nn.Parameter(torch.tensor(pca.components_))
    model.add_module('dense', dense)



print("Read source file")
source = {}
with open(source_file, encoding='utf8') as fIn:
    for line in fIn:
        id, sentence = line.strip().split("\t", maxsplit=1)
        source[id] = sentence

print("Read target file")
target = {}
with open(target_file, encoding='utf8') as fIn:
    for line in fIn:
        id, sentence = line.strip().split("\t", maxsplit=1)
        target[id] = sentence

labels = defaultdict(lambda: defaultdict(bool))
num_total_parallel = 0
with open(labels_file) as fIn:
    for line in fIn:
        src_id, trg_id = line.strip().split("\t")
        if src_id in source and trg_id in target:
            labels[src_id][trg_id] = True
            labels[trg_id][src_id] = True
            num_total_parallel += 1

print("Source Sentences:", len(source))
print("Target Sentences:", len(target))
print("Num Parallel:", num_total_parallel)

### Encode source sentences
source_ids = list(source.keys())
source_sentences = [source[id] for id in source_ids]

if not os.path.exists(source_embedding_file):
    print("Encode source sentences")
    source_embeddings = model.encode(source_sentences, show_progress_bar=True, convert_to_numpy=True)
    with open(source_embedding_file, 'wb') as fOut:
        pickle.dump(source_embeddings, fOut)
else:
    with open(source_embedding_file, 'rb') as fIn:
        source_embeddings = pickle.load(fIn)

### Encode target sentences
target_ids = list(target.keys())
target_sentences = [target[id] for id in target_ids]

if not os.path.exists(target_embedding_file):
    print("Encode target sentences")
    target_embeddings = model.encode(target_sentences, show_progress_bar=True, convert_to_numpy=True)
    with open(target_embedding_file, 'wb') as fOut:
        pickle.dump(target_embeddings, fOut)
else:
    with open(target_embedding_file, 'rb') as fIn:
        target_embeddings = pickle.load(fIn)

##### Now we start to search for parallel (translated) sentences

# Normalize embeddings
x = source_embeddings
y = target_embeddings

print("Shape Source:", x.shape)
print("Shape Target:", y.shape)

x = x / np.linalg.norm(x, axis=1, keepdims=True)
y = y / np.linalg.norm(y, axis=1, keepdims=True)

# Perform kNN in both directions
x2y_sim, x2y_ind = kNN(x, y, knn_neighbors, use_ann_search, ann_num_clusters, ann_num_cluster_probe)
x2y_mean = x2y_sim.mean(axis=1)

y2x_sim, y2x_ind = kNN(y, x, knn_neighbors, use_ann_search, ann_num_clusters, ann_num_cluster_probe)
y2x_mean = y2x_sim.mean(axis=1)

# Compute forward and backward scores
margin = lambda a, b: a / b
fwd_scores = score_candidates(x, y, x2y_ind, x2y_mean, y2x_mean, margin)
bwd_scores = score_candidates(y, x, y2x_ind, y2x_mean, x2y_mean, margin)
fwd_best = x2y_ind[np.arange(x.shape[0]), fwd_scores.argmax(axis=1)]
bwd_best = y2x_ind[np.arange(y.shape[0]), bwd_scores.argmax(axis=1)]

indices = np.stack([np.concatenate([np.arange(x.shape[0]), bwd_best]), np.concatenate([fwd_best, np.arange(y.shape[0])])], axis=1)
scores = np.concatenate([fwd_scores.max(axis=1), bwd_scores.max(axis=1)])
seen_src, seen_trg = set(), set()

#Extact list of parallel sentences
bitext_list = []
for i in np.argsort(-scores):
    src_ind, trg_ind = indices[i]
    src_ind = int(src_ind)
    trg_ind = int(trg_ind)

    if scores[i] < min_threshold:
        break

    if src_ind not in seen_src and trg_ind not in seen_trg:
        seen_src.add(src_ind)
        seen_trg.add(trg_ind)
        bitext_list.append([scores[i], source_ids[src_ind], target_ids[trg_ind]])


# Measure Performance by computing the threshold
# that leads to the best F1 score performance
bitext_list = sorted(bitext_list, key=lambda x: x[0], reverse=True)

n_extract = n_correct = 0
threshold = 0
best_f1 = best_recall = best_precision = 0
average_precision = 0

for idx in range(len(bitext_list)):
    score, id1, id2 = bitext_list[idx]
    n_extract += 1
    if labels[id1][id2] or labels[id2][id1]:
        n_correct += 1
        precision = n_correct / n_extract
        recall = n_correct / num_total_parallel
        f1 = 2 * precision * recall / (precision + recall)
        average_precision += precision
        if f1 > best_f1:
            best_f1 = f1
            best_precision = precision
            best_recall = recall
            threshold = (bitext_list[idx][0] + bitext_list[min(idx + 1, len(bitext_list)-1)][0]) / 2

print("Best Threshold:", threshold)
print("Recall:", best_recall)
print("Precision:", best_precision)
print("F1:", best_f1)