File size: 7,790 Bytes
2359bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
"""
This script tests the approach on the BUCC 2018 shared task on finding parallel sentences:
https://comparable.limsi.fr/bucc2018/bucc2018-task.html
You can download the necessary files from there.
We have used it in our paper (https://arxiv.org/pdf/2004.09813.pdf) in Section 4.2 to evaluate different multilingual models.
This script requires that you have FAISS installed:
https://github.com/facebookresearch/faiss
"""
from sentence_transformers import SentenceTransformer, models
from collections import defaultdict
import os
import pickle
from sklearn.decomposition import PCA
import torch
from bitext_mining_utils import *
#Model we want to use for bitext mining. LaBSE achieves state-of-the-art performance
model_name = 'LaBSE'
model = SentenceTransformer(model_name)
#Intput files for BUCC2018 shared task
source_file = "bucc2018/de-en/de-en.training.de"
target_file = "bucc2018/de-en/de-en.training.en"
labels_file = "bucc2018/de-en/de-en.training.gold"
# We base the scoring on k nearest neighbors for each element
knn_neighbors = 4
# Min score for text pairs. Note, score can be larger than 1
min_threshold = 1
#Do we want to use exact search of approximate nearest neighbor search (ANN)
#Exact search: Slower, but we don't miss any parallel sentences
#ANN: Faster, but the recall will be lower
use_ann_search = True
#Number of clusters for ANN. Optimal number depends on dataset size
ann_num_clusters = 32768
#How many cluster to explorer for search. Higher number = better recall, slower
ann_num_cluster_probe = 5
#To save memory, we can use PCA to reduce the dimensionality from 768 to for example 128 dimensions
#The encoded embeddings will hence require 6 times less memory. However, we observe a small drop in performance.
use_pca = False
pca_dimensions = 128
#We store the embeddings on disc, so that they can later be loaded from disc
source_embedding_file = '{}_{}_{}.emb'.format(model_name, os.path.basename(source_file), pca_dimensions if use_pca else model.get_sentence_embedding_dimension())
target_embedding_file = '{}_{}_{}.emb'.format(model_name, os.path.basename(target_file), pca_dimensions if use_pca else model.get_sentence_embedding_dimension())
#Use PCA to reduce the dimensionality of the sentence embedding model
if use_pca:
# We use a smaller number of training sentences to learn the PCA
train_sent = []
num_train_sent = 20000
with open(source_file, encoding='utf8') as fSource, open(target_file, encoding='utf8') as fTarget:
for line_source, line_target in zip(fSource, fTarget):
id, sentence = line_source.strip().split("\t", maxsplit=1)
train_sent.append(sentence)
id, sentence = line_target.strip().split("\t", maxsplit=1)
train_sent.append(sentence)
if len(train_sent) >= num_train_sent:
break
print("Encode training embeddings for PCA")
train_matrix = model.encode(train_sent, show_progress_bar=True, convert_to_numpy=True)
pca = PCA(n_components=pca_dimensions)
pca.fit(train_matrix)
dense = models.Dense(in_features=model.get_sentence_embedding_dimension(), out_features=pca_dimensions, bias=False, activation_function=torch.nn.Identity())
dense.linear.weight = torch.nn.Parameter(torch.tensor(pca.components_))
model.add_module('dense', dense)
print("Read source file")
source = {}
with open(source_file, encoding='utf8') as fIn:
for line in fIn:
id, sentence = line.strip().split("\t", maxsplit=1)
source[id] = sentence
print("Read target file")
target = {}
with open(target_file, encoding='utf8') as fIn:
for line in fIn:
id, sentence = line.strip().split("\t", maxsplit=1)
target[id] = sentence
labels = defaultdict(lambda: defaultdict(bool))
num_total_parallel = 0
with open(labels_file) as fIn:
for line in fIn:
src_id, trg_id = line.strip().split("\t")
if src_id in source and trg_id in target:
labels[src_id][trg_id] = True
labels[trg_id][src_id] = True
num_total_parallel += 1
print("Source Sentences:", len(source))
print("Target Sentences:", len(target))
print("Num Parallel:", num_total_parallel)
### Encode source sentences
source_ids = list(source.keys())
source_sentences = [source[id] for id in source_ids]
if not os.path.exists(source_embedding_file):
print("Encode source sentences")
source_embeddings = model.encode(source_sentences, show_progress_bar=True, convert_to_numpy=True)
with open(source_embedding_file, 'wb') as fOut:
pickle.dump(source_embeddings, fOut)
else:
with open(source_embedding_file, 'rb') as fIn:
source_embeddings = pickle.load(fIn)
### Encode target sentences
target_ids = list(target.keys())
target_sentences = [target[id] for id in target_ids]
if not os.path.exists(target_embedding_file):
print("Encode target sentences")
target_embeddings = model.encode(target_sentences, show_progress_bar=True, convert_to_numpy=True)
with open(target_embedding_file, 'wb') as fOut:
pickle.dump(target_embeddings, fOut)
else:
with open(target_embedding_file, 'rb') as fIn:
target_embeddings = pickle.load(fIn)
##### Now we start to search for parallel (translated) sentences
# Normalize embeddings
x = source_embeddings
y = target_embeddings
print("Shape Source:", x.shape)
print("Shape Target:", y.shape)
x = x / np.linalg.norm(x, axis=1, keepdims=True)
y = y / np.linalg.norm(y, axis=1, keepdims=True)
# Perform kNN in both directions
x2y_sim, x2y_ind = kNN(x, y, knn_neighbors, use_ann_search, ann_num_clusters, ann_num_cluster_probe)
x2y_mean = x2y_sim.mean(axis=1)
y2x_sim, y2x_ind = kNN(y, x, knn_neighbors, use_ann_search, ann_num_clusters, ann_num_cluster_probe)
y2x_mean = y2x_sim.mean(axis=1)
# Compute forward and backward scores
margin = lambda a, b: a / b
fwd_scores = score_candidates(x, y, x2y_ind, x2y_mean, y2x_mean, margin)
bwd_scores = score_candidates(y, x, y2x_ind, y2x_mean, x2y_mean, margin)
fwd_best = x2y_ind[np.arange(x.shape[0]), fwd_scores.argmax(axis=1)]
bwd_best = y2x_ind[np.arange(y.shape[0]), bwd_scores.argmax(axis=1)]
indices = np.stack([np.concatenate([np.arange(x.shape[0]), bwd_best]), np.concatenate([fwd_best, np.arange(y.shape[0])])], axis=1)
scores = np.concatenate([fwd_scores.max(axis=1), bwd_scores.max(axis=1)])
seen_src, seen_trg = set(), set()
#Extact list of parallel sentences
bitext_list = []
for i in np.argsort(-scores):
src_ind, trg_ind = indices[i]
src_ind = int(src_ind)
trg_ind = int(trg_ind)
if scores[i] < min_threshold:
break
if src_ind not in seen_src and trg_ind not in seen_trg:
seen_src.add(src_ind)
seen_trg.add(trg_ind)
bitext_list.append([scores[i], source_ids[src_ind], target_ids[trg_ind]])
# Measure Performance by computing the threshold
# that leads to the best F1 score performance
bitext_list = sorted(bitext_list, key=lambda x: x[0], reverse=True)
n_extract = n_correct = 0
threshold = 0
best_f1 = best_recall = best_precision = 0
average_precision = 0
for idx in range(len(bitext_list)):
score, id1, id2 = bitext_list[idx]
n_extract += 1
if labels[id1][id2] or labels[id2][id1]:
n_correct += 1
precision = n_correct / n_extract
recall = n_correct / num_total_parallel
f1 = 2 * precision * recall / (precision + recall)
average_precision += precision
if f1 > best_f1:
best_f1 = f1
best_precision = precision
best_recall = recall
threshold = (bitext_list[idx][0] + bitext_list[min(idx + 1, len(bitext_list)-1)][0]) / 2
print("Best Threshold:", threshold)
print("Recall:", best_recall)
print("Precision:", best_precision)
print("F1:", best_f1)
|