File size: 1,190 Bytes
2359bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
"""
This basic example loads a pre-trained model from the web and uses it to
generate sentence embeddings for a given list of sentences.
"""

from sentence_transformers import SentenceTransformer, LoggingHandler
import numpy as np
import logging

#### Just some code to print debug information to stdout
np.set_printoptions(threshold=100)

logging.basicConfig(format='%(asctime)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    level=logging.INFO,
                    handlers=[LoggingHandler()])
#### /print debug information to stdout



# Load pre-trained Sentence Transformer Model. It will be downloaded automatically
model = SentenceTransformer('all-MiniLM-L6-v2')

# Embed a list of sentences
sentences = ['This framework generates embeddings for each input sentence',
             'Sentences are passed as a list of string.',
             'The quick brown fox jumps over the lazy dog.']
sentence_embeddings = model.encode(sentences)

# The result is a list of sentence embeddings as numpy arrays
for sentence, embedding in zip(sentences, sentence_embeddings):
    print("Sentence:", sentence)
    print("Embedding:", embedding)
    print("")