File size: 1,726 Bytes
2359bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
"""
This is a simple application for sentence embeddings: clustering

Sentences are mapped to sentence embeddings and then agglomerative clustering with a threshold is applied.
"""
from sentence_transformers import SentenceTransformer
from sklearn.cluster import AgglomerativeClustering
import numpy as np

embedder = SentenceTransformer('all-MiniLM-L6-v2')

# Corpus with example sentences
corpus = ['A man is eating food.',
          'A man is eating a piece of bread.',
          'A man is eating pasta.',
          'The girl is carrying a baby.',
          'The baby is carried by the woman',
          'A man is riding a horse.',
          'A man is riding a white horse on an enclosed ground.',
          'A monkey is playing drums.',
          'Someone in a gorilla costume is playing a set of drums.',
          'A cheetah is running behind its prey.',
          'A cheetah chases prey on across a field.'
          ]
corpus_embeddings = embedder.encode(corpus)

# Normalize the embeddings to unit length
corpus_embeddings = corpus_embeddings /  np.linalg.norm(corpus_embeddings, axis=1, keepdims=True)

# Perform kmean clustering
clustering_model = AgglomerativeClustering(n_clusters=None, distance_threshold=1.5) #, affinity='cosine', linkage='average', distance_threshold=0.4)
clustering_model.fit(corpus_embeddings)
cluster_assignment = clustering_model.labels_

clustered_sentences = {}
for sentence_id, cluster_id in enumerate(cluster_assignment):
    if cluster_id not in clustered_sentences:
        clustered_sentences[cluster_id] = []

    clustered_sentences[cluster_id].append(corpus[sentence_id])

for i, cluster in clustered_sentences.items():
    print("Cluster ", i+1)
    print(cluster)
    print("")