llama_model_loader: loaded meta data with 23 key-value pairs and 291 tensors from Llama-3-Instruct-8B-SPPO-Iter3-IMat-GGUF/Llama-3-Instruct-8B-SPPO-Iter3.Q8_0.gguf.hardlink.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = llama
llama_model_loader: - kv   1:                               general.name str              = Llama-3-Instruct-8B-SPPO-Iter3
llama_model_loader: - kv   2:                          llama.block_count u32              = 32
llama_model_loader: - kv   3:                       llama.context_length u32              = 8192
llama_model_loader: - kv   4:                     llama.embedding_length u32              = 4096
llama_model_loader: - kv   5:                  llama.feed_forward_length u32              = 14336
llama_model_loader: - kv   6:                 llama.attention.head_count u32              = 32
llama_model_loader: - kv   7:              llama.attention.head_count_kv u32              = 8
llama_model_loader: - kv   8:                       llama.rope.freq_base f32              = 500000.000000
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 7
llama_model_loader: - kv  11:                           llama.vocab_size u32              = 128256
llama_model_loader: - kv  12:                 llama.rope.dimension_count u32              = 128
llama_model_loader: - kv  13:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  14:                         tokenizer.ggml.pre str              = llama-bpe
llama_model_loader: - kv  15:                      tokenizer.ggml.tokens arr[str,128256]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  16:                  tokenizer.ggml.token_type arr[i32,128256]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  17:                      tokenizer.ggml.merges arr[str,280147]  = ["Ġ Ġ", "Ġ ĠĠĠ", "ĠĠ ĠĠ", "...
llama_model_loader: - kv  18:                tokenizer.ggml.bos_token_id u32              = 128000
llama_model_loader: - kv  19:                tokenizer.ggml.eos_token_id u32              = 128009
llama_model_loader: - kv  20:            tokenizer.ggml.padding_token_id u32              = 128009
llama_model_loader: - kv  21:                    tokenizer.chat_template str              = {% set loop_messages = messages %}{% ...
llama_model_loader: - kv  22:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q8_0:  226 tensors
llm_load_vocab: special tokens cache size = 256
llm_load_vocab: token to piece cache size = 0.8000 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 128256
llm_load_print_meta: n_merges         = 280147
llm_load_print_meta: n_ctx_train      = 8192
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 14336
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 500000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 8192
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 8B
llm_load_print_meta: model ftype      = Q8_0
llm_load_print_meta: model params     = 8.03 B
llm_load_print_meta: model size       = 7.95 GiB (8.50 BPW) 
llm_load_print_meta: general.name     = Llama-3-Instruct-8B-SPPO-Iter3
llm_load_print_meta: BOS token        = 128000 '<|begin_of_text|>'
llm_load_print_meta: EOS token        = 128009 '<|eot_id|>'
llm_load_print_meta: PAD token        = 128009 '<|eot_id|>'
llm_load_print_meta: LF token         = 128 'Ä'
llm_load_print_meta: EOT token        = 128009 '<|eot_id|>'
llm_load_print_meta: max token length = 256
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
llm_load_tensors: ggml ctx size =    0.27 MiB
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors:        CPU buffer size =   532.31 MiB
llm_load_tensors:      CUDA0 buffer size =  7605.33 MiB
.........................................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: n_batch    = 512
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 500000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:      CUDA0 KV buffer size =    64.00 MiB
llama_new_context_with_model: KV self size  =   64.00 MiB, K (f16):   32.00 MiB, V (f16):   32.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.49 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =   258.50 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =     9.01 MiB
llama_new_context_with_model: graph nodes  = 1030
llama_new_context_with_model: graph splits = 2

system_info: n_threads = 25 / 32 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 
compute_imatrix: tokenizing the input ..
compute_imatrix: tokenization took 64.595 ms
compute_imatrix: computing over 125 chunks with batch_size 512
compute_imatrix: 0.83 seconds per pass - ETA 1.72 minutes
[1]7.1146,[2]5.5633,[3]4.9033,[4]6.2338,[5]6.4395,[6]5.2909,[7]5.6433,[8]6.2173,[9]6.4763,
save_imatrix: stored collected data after 10 chunks in Llama-3-Instruct-8B-SPPO-Iter3-IMat-GGUF/imatrix.dat
[10]5.8334,[11]6.3363,[12]6.9164,[13]7.3915,[14]7.8408,[15]8.1553,[16]8.4420,[17]8.6336,[18]8.3251,[19]7.8869,
save_imatrix: stored collected data after 20 chunks in Llama-3-Instruct-8B-SPPO-Iter3-IMat-GGUF/imatrix.dat
[20]7.8945,[21]8.0643,[22]7.9991,[23]8.3410,[24]8.3056,[25]8.6923,[26]8.7143,[27]8.7966,[28]9.0155,[29]9.0275,
save_imatrix: stored collected data after 30 chunks in Llama-3-Instruct-8B-SPPO-Iter3-IMat-GGUF/imatrix.dat
[30]9.0186,[31]8.5162,[32]8.0651,[33]7.8415,[34]7.6520,[35]7.7247,[36]7.8072,[37]7.7331,[38]7.8325,[39]8.0203,
save_imatrix: stored collected data after 40 chunks in Llama-3-Instruct-8B-SPPO-Iter3-IMat-GGUF/imatrix.dat
[40]8.1211,[41]8.2076,[42]8.3124,[43]8.5445,[44]8.6209,[45]8.7726,[46]8.6312,[47]8.7817,[48]8.8636,[49]8.9627,
save_imatrix: stored collected data after 50 chunks in Llama-3-Instruct-8B-SPPO-Iter3-IMat-GGUF/imatrix.dat
[50]8.8179,[51]8.9467,[52]9.0850,[53]9.1818,[54]9.2510,[55]9.3461,[56]9.3836,[57]9.4482,[58]9.4609,[59]9.4704,
save_imatrix: stored collected data after 60 chunks in Llama-3-Instruct-8B-SPPO-Iter3-IMat-GGUF/imatrix.dat
[60]9.4077,[61]9.3889,[62]9.4296,[63]9.4772,[64]9.3666,[65]9.3270,[66]9.3448,[67]9.3176,[68]9.2975,[69]9.2811,
save_imatrix: stored collected data after 70 chunks in Llama-3-Instruct-8B-SPPO-Iter3-IMat-GGUF/imatrix.dat
[70]9.2812,[71]9.2683,[72]9.2650,[73]9.2262,[74]9.1612,[75]9.1591,[76]9.1567,[77]9.1178,[78]9.1121,[79]9.1597,
save_imatrix: stored collected data after 80 chunks in Llama-3-Instruct-8B-SPPO-Iter3-IMat-GGUF/imatrix.dat
[80]9.2015,[81]9.1945,[82]9.1915,[83]9.2246,[84]9.0902,[85]9.0730,[86]9.0704,[87]9.0823,[88]9.1088,[89]9.1139,
save_imatrix: stored collected data after 90 chunks in Llama-3-Instruct-8B-SPPO-Iter3-IMat-GGUF/imatrix.dat
[90]9.0465,[91]8.9625,[92]8.8767,[93]8.8114,[94]8.7455,[95]8.6825,[96]8.6344,[97]8.6486,[98]8.6937,[99]8.7894,
save_imatrix: stored collected data after 100 chunks in Llama-3-Instruct-8B-SPPO-Iter3-IMat-GGUF/imatrix.dat
[100]8.8818,[101]8.9448,[102]9.0881,[103]9.1199,[104]9.1685,[105]9.0797,[106]9.0848,[107]9.0180,[108]8.9430,[109]8.8576,
save_imatrix: stored collected data after 110 chunks in Llama-3-Instruct-8B-SPPO-Iter3-IMat-GGUF/imatrix.dat
[110]8.9121,[111]8.9707,[112]8.9816,[113]8.9868,[114]9.0345,[115]9.0761,[116]9.0970,[117]9.1362,[118]9.1786,[119]9.1072,
save_imatrix: stored collected data after 120 chunks in Llama-3-Instruct-8B-SPPO-Iter3-IMat-GGUF/imatrix.dat
[120]9.1169,[121]9.1396,[122]9.1697,[123]9.2171,[124]9.2448,[125]9.2795,
save_imatrix: stored collected data after 125 chunks in Llama-3-Instruct-8B-SPPO-Iter3-IMat-GGUF/imatrix.dat

llama_print_timings:        load time =    2383.46 ms
llama_print_timings:      sample time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_print_timings: prompt eval time =   87673.99 ms / 64000 tokens (    1.37 ms per token,   729.98 tokens per second)
llama_print_timings:        eval time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_print_timings:       total time =   90337.25 ms / 64001 tokens

Final estimate: PPL = 9.2795 +/- 0.14689