leejeewoo commited on
Commit
b1c4917
·
verified ·
1 Parent(s): 7693e8b

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 214.52 +/- 71.33
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9ec6cb2cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9ec6cb2d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9ec6cb2dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9ec6cb2e60>", "_build": "<function ActorCriticPolicy._build at 0x7f9ec6cb2ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9ec6cb2f80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9ec6cb3010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9ec6cb30a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9ec6cb3130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9ec6cb31c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9ec6cb3250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9ec6cb32e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9ec6c53000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1707464832616981436, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJplM70pOAy6c71VuekAQrSpSHU6XcZ/OAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9rXs5XEIiMAWyUTVEBjAF0lEdAoenl4Pf8/HV9lChoBkdAaqkAOJ+DvmgHTVcBaAhHQKHrK4EwFkh1fZQoaAZHQG/SfTb349JoB02TAWgIR0Ch6+/IjnmrdX2UKGgGR0AyEw/gR9PUaAdNLAFoCEdAoex8Xm/34HV9lChoBkdAQVDSmZVn3GgHTQsBaAhHQKHtlrRjSXt1fZQoaAZHQGxLHtF8XvZoB01IAWgIR0Ch7juKXOW0dX2UKGgGR0BwNxUgjhUBaAdNewFoCEdAoe7t9Ujs2XV9lChoBkdAb7NyUcGTtGgHTckBaAhHQKHwXoexOcl1fZQoaAZHQG8lr5hz/6xoB01NAWgIR0Ch8PiGvfTDdX2UKGgGR0BkElelbeMyaAdN6ANoCEdAofOLv5P/JnV9lChoBkfAAziVB2OhkGgHTVEBaAhHQKH0LJGvwE11fZQoaAZHQGBFOhkAggZoB03oA2gIR0Ch9xA3T/hmdX2UKGgGR0BuhvNs3yZsaAdNZgFoCEdAofjILThHb3V9lChoBkdAbvgx8lXzUmgHTR8BaAhHQKH5mzDXOGF1fZQoaAZHQGx2jHwPRRdoB01WAWgIR0Ch+pH4fwI/dX2UKGgGR0BwFfStvGZNaAdNOAFoCEdAofvR1RtP6HV9lChoBkdAcPHu/Dcdo2gHTXgBaAhHQKH8hQgLZzx1fZQoaAZHQHCtBfjS5RVoB01DAWgIR0Ch/RysCDEndX2UKGgGR0BwgGa9bor4aAdNMwFoCEdAof5CwjdHlXV9lChoBkdAbg2C2+fyw2gHTYcBaAhHQKH++8CgbqB1fZQoaAZHQDeNpmEoOQRoB0vuaAhHQKH/avCdjG11fZQoaAZHQHDFIZ/CqIdoB02LAWgIR0CiAL0SIxgzdX2UKGgGR0BtVJgJC0F9aAdNJQFoCEdAogFG+0w8GXV9lChoBkdAcQwtygf2b2gHTUwBaAhHQKIB54L1EmZ1fZQoaAZHQD5U9dNWU8poB0vcaAhHQKICTU83dbh1fZQoaAZHQG7R5prULD1oB00qAWgIR0CiA2BnSOR1dX2UKGgGR0BxwtZLZi/gaAdNMwFoCEdAogP3KB/ZunV9lChoBkdAN5nscABDHGgHTUQBaAhHQKIEjKCg9Nh1fZQoaAZHQG9S7ILgGbFoB01cAWgIR0CiBcVT72tddX2UKGgGR0BxF59uxbB5aAdNnAFoCEdAogaIEt/WlXV9lChoBkdAcD8LEUCaJGgHTZMBaAhHQKIHSAS39aV1fZQoaAZHQHFFHEhq0t1oB00aAWgIR0CiCGkovzvrdX2UKGgGR0BkgqOvMbFTaAdNHgJoCEdAoglq4rjHXHV9lChoBkdAb/Anc+JP7GgHTaQBaAhHQKIKu4uscQ11fZQoaAZHQGFL7XxvvSdoB03oA2gIR0CiDTDOs1badX2UKGgGR0BwgnHvMKTjaAdNdAFoCEdAog3iQNkOJHV9lChoBkfANdPj0cwQDmgHTT4BaAhHQKIOgjqv/zd1fZQoaAZHQG7qDHwPRRdoB012AWgIR0CiEFE2Hck/dX2UKGgGR0BudHwTdtVJaAdNiQFoCEdAohFKYE4ecXV9lChoBkdAas1SaVlf7mgHTTwBaAhHQKISHwOvt+l1fZQoaAZHQHB/0xdpqRFoB029AWgIR0CiE/UFjd56dX2UKGgGR0BulHvMKTjeaAdNkwFoCEdAohS0zfrKNnV9lChoBkdAOfCQgcLjP2gHS8VoCEdAohUQg9vCM3V9lChoBkdAbJG1JlJ6IGgHTYwBaAhHQKIWaAI6bON1fZQoaAZHv/U2alUIcBFoB01OAWgIR0CiFwW8h9srdX2UKGgGR0BuY72QGOdYaAdNcgFoCEdAohezu4PPLXV9lChoBkdAbS5BxgiNbWgHTVwBaAhHQKIY8l3Qla91fZQoaAZHQHGO3MdLg4xoB002AWgIR0CiGYQMH8jzdX2UKGgGR0BqoX1vl2eQaAdNgQFoCEdAoho6xRl6JXV9lChoBkdAbRcHRkVer2gHTY8BaAhHQKIbihs67ul1fZQoaAZHQG6p8XFcY65oB01EAWgIR0CiHCRW912adX2UKGgGR0BwXiTSsr/baAdNZAFoCEdAoh1awyIpIHV9lChoBkdAcDvFtbcGkmgHTS4BaAhHQKId6Dcuand1fZQoaAZHQHCQxLsa86FoB001AWgIR0CiHneRoysTdX2UKGgGR0BxdkVtXPqtaAdNfAFoCEdAoh+76pHZsnV9lChoBkdAb1JNi6QNkWgHTYIBaAhHQKIgcZrpJPJ1fZQoaAZHQG4PnJT2nKpoB02LAWgIR0CiITHBtUGWdX2UKGgGR0Bs270UXYUWaAdNUwFoCEdAoiJozabnYHV9lChoBkdAa0ied07r9mgHTV8BaAhHQKIjELSeAd51fZQoaAZHQGqfP/JeVs1oB03VAmgIR0CiJQLwe/5+dX2UKGgGR0BtsGl67dzoaAdNewFoCEdAoiW0/0NBnnV9lChoBkdAcTIKzRhMJ2gHTY4BaAhHQKImcZLIxQB1fZQoaAZHQG49x/EwWWRoB02AAWgIR0CiJ9xBu4wzdX2UKGgGR0Bwcpmz0HyFaAdNUgFoCEdAoiiwOQQtjHV9lChoBkdAcZKkmx+rl2gHTSMBaAhHQKIpZ4HHFP11fZQoaAZHQHAFUuL74ztoB01XAWgIR0CiKwM+FDfFdX2UKGgGR0BsliPMjeKsaAdNZgFoCEdAoiv2nyd4FHV9lChoBkdAcC9QKrq+rWgHTWoBaAhHQKIssxX4j8l1fZQoaAZHQHFG/9tMwlBoB02hAWgIR0CiLhU5lvqDdX2UKGgGR0Bwmyogmqo7aAdNTwFoCEdAoi6tD+irUHV9lChoBkdAcaiuPmxMWWgHTWkBaAhHQKIv4UzKs+51fZQoaAZHQHC33OjZcs1oB02JAWgIR0CiMJfKISDidX2UKGgGR0Bx4HP2PDHfaAdNKAFoCEdAojEhprULD3V9lChoBkdAPQRYA80UGmgHTUQBaAhHQKIySFgUlAx1fZQoaAZHQHCEBtHhCMRoB01XAWgIR0CiMuroW56MdX2UKGgGR0BuqPDNyHVPaAdNbwFoCEdAojOcwztTk3V9lChoBkdAcGC5WRzRyGgHTWkBaAhHQKI02Vwgkkd1fZQoaAZHQHGUoA80UGpoB017AWgIR0CiNZPoFFDwdX2UKGgGR0Bvw/q7iADraAdNcAFoCEdAojZDJp35e3V9lChoBkdAcDapNsWO62gHTZsBaAhHQKI3mBIWgvl1fZQoaAZHQG65Ina37UJoB02SAWgIR0CiOFT3AVO9dX2UKGgGR0BLnxASnLq2aAdNJgFoCEdAojjdnIyTIXV9lChoBkdAazDs3Q2MsGgHTWABaAhHQKI6HqbjLjh1fZQoaAZHQHBlt3KSxJNoB02NAWgIR0CiOtU3wTdtdX2UKGgGR0BxIotPHktFaAdNLAFoCEdAojtnjdYW+HV9lChoBkdAcJNJLdvbXmgHTYkBaAhHQKI8s67ulXR1fZQoaAZHQHEPOYplSTBoB02tAWgIR0CiPYdP+GXYdX2UKGgGR0Bv7jSRbKRuaAdNggFoCEdAoj7cfV7QcHV9lChoBkdAb+0qR2bG3mgHTXIBaAhHQKI/jjm0VrR1fZQoaAZHQG0tAB1cMVloB012AWgIR0CiQEaXBxgidX2UKGgGR0Bqcd+mWMS9aAdNVQFoCEdAokHxvR7Z4HV9lChoBkdAb6UTGHYYi2gHTZoBaAhHQKJC7ZVXFLp1fZQoaAZHQGt4N70Fr2xoB01dAWgIR0CiQ9bfgrH3dX2UKGgGR0BslmRcNYr8aAdNXQFoCEdAokVuZ7Xxv3V9lChoBkdAavHY8Md92GgHTWEBaAhHQKJGGtXgccV1fZQoaAZHQHEVu+h4+r5oB00jAWgIR0CiRqRAKOT8dX2UKGgGR0BxNnJiiItUaAdN5QFoCEdAokgdNzr/sHV9lChoBkdAcFJMfA9FF2gHTXIBaAhHQKJIyZJCjUN1fZQoaAZHQG4EblaKUFBoB02AAmgIR0CiSpsMI/qxdX2UKGgGR0BtO8YCQtBfaAdNTQFoCEdAoktNy5qdpnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3960, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55105b8b21681fc0407de94c5dbcc8ec951d14d859d266e88fe332fce94f7428
3
+ size 146899
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9ec6cb2cb0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9ec6cb2d40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9ec6cb2dd0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9ec6cb2e60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9ec6cb2ef0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9ec6cb2f80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9ec6cb3010>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9ec6cb30a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9ec6cb3130>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9ec6cb31c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9ec6cb3250>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9ec6cb32e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f9ec6c53000>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1707464832616981436,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJplM70pOAy6c71VuekAQrSpSHU6XcZ/OAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9rXs5XEIiMAWyUTVEBjAF0lEdAoenl4Pf8/HV9lChoBkdAaqkAOJ+DvmgHTVcBaAhHQKHrK4EwFkh1fZQoaAZHQG/SfTb349JoB02TAWgIR0Ch6+/IjnmrdX2UKGgGR0AyEw/gR9PUaAdNLAFoCEdAoex8Xm/34HV9lChoBkdAQVDSmZVn3GgHTQsBaAhHQKHtlrRjSXt1fZQoaAZHQGxLHtF8XvZoB01IAWgIR0Ch7juKXOW0dX2UKGgGR0BwNxUgjhUBaAdNewFoCEdAoe7t9Ujs2XV9lChoBkdAb7NyUcGTtGgHTckBaAhHQKHwXoexOcl1fZQoaAZHQG8lr5hz/6xoB01NAWgIR0Ch8PiGvfTDdX2UKGgGR0BkElelbeMyaAdN6ANoCEdAofOLv5P/JnV9lChoBkfAAziVB2OhkGgHTVEBaAhHQKH0LJGvwE11fZQoaAZHQGBFOhkAggZoB03oA2gIR0Ch9xA3T/hmdX2UKGgGR0BuhvNs3yZsaAdNZgFoCEdAofjILThHb3V9lChoBkdAbvgx8lXzUmgHTR8BaAhHQKH5mzDXOGF1fZQoaAZHQGx2jHwPRRdoB01WAWgIR0Ch+pH4fwI/dX2UKGgGR0BwFfStvGZNaAdNOAFoCEdAofvR1RtP6HV9lChoBkdAcPHu/Dcdo2gHTXgBaAhHQKH8hQgLZzx1fZQoaAZHQHCtBfjS5RVoB01DAWgIR0Ch/RysCDEndX2UKGgGR0BwgGa9bor4aAdNMwFoCEdAof5CwjdHlXV9lChoBkdAbg2C2+fyw2gHTYcBaAhHQKH++8CgbqB1fZQoaAZHQDeNpmEoOQRoB0vuaAhHQKH/avCdjG11fZQoaAZHQHDFIZ/CqIdoB02LAWgIR0CiAL0SIxgzdX2UKGgGR0BtVJgJC0F9aAdNJQFoCEdAogFG+0w8GXV9lChoBkdAcQwtygf2b2gHTUwBaAhHQKIB54L1EmZ1fZQoaAZHQD5U9dNWU8poB0vcaAhHQKICTU83dbh1fZQoaAZHQG7R5prULD1oB00qAWgIR0CiA2BnSOR1dX2UKGgGR0BxwtZLZi/gaAdNMwFoCEdAogP3KB/ZunV9lChoBkdAN5nscABDHGgHTUQBaAhHQKIEjKCg9Nh1fZQoaAZHQG9S7ILgGbFoB01cAWgIR0CiBcVT72tddX2UKGgGR0BxF59uxbB5aAdNnAFoCEdAogaIEt/WlXV9lChoBkdAcD8LEUCaJGgHTZMBaAhHQKIHSAS39aV1fZQoaAZHQHFFHEhq0t1oB00aAWgIR0CiCGkovzvrdX2UKGgGR0BkgqOvMbFTaAdNHgJoCEdAoglq4rjHXHV9lChoBkdAb/Anc+JP7GgHTaQBaAhHQKIKu4uscQ11fZQoaAZHQGFL7XxvvSdoB03oA2gIR0CiDTDOs1badX2UKGgGR0BwgnHvMKTjaAdNdAFoCEdAog3iQNkOJHV9lChoBkfANdPj0cwQDmgHTT4BaAhHQKIOgjqv/zd1fZQoaAZHQG7qDHwPRRdoB012AWgIR0CiEFE2Hck/dX2UKGgGR0BudHwTdtVJaAdNiQFoCEdAohFKYE4ecXV9lChoBkdAas1SaVlf7mgHTTwBaAhHQKISHwOvt+l1fZQoaAZHQHB/0xdpqRFoB029AWgIR0CiE/UFjd56dX2UKGgGR0BulHvMKTjeaAdNkwFoCEdAohS0zfrKNnV9lChoBkdAOfCQgcLjP2gHS8VoCEdAohUQg9vCM3V9lChoBkdAbJG1JlJ6IGgHTYwBaAhHQKIWaAI6bON1fZQoaAZHv/U2alUIcBFoB01OAWgIR0CiFwW8h9srdX2UKGgGR0BuY72QGOdYaAdNcgFoCEdAohezu4PPLXV9lChoBkdAbS5BxgiNbWgHTVwBaAhHQKIY8l3Qla91fZQoaAZHQHGO3MdLg4xoB002AWgIR0CiGYQMH8jzdX2UKGgGR0BqoX1vl2eQaAdNgQFoCEdAoho6xRl6JXV9lChoBkdAbRcHRkVer2gHTY8BaAhHQKIbihs67ul1fZQoaAZHQG6p8XFcY65oB01EAWgIR0CiHCRW912adX2UKGgGR0BwXiTSsr/baAdNZAFoCEdAoh1awyIpIHV9lChoBkdAcDvFtbcGkmgHTS4BaAhHQKId6Dcuand1fZQoaAZHQHCQxLsa86FoB001AWgIR0CiHneRoysTdX2UKGgGR0BxdkVtXPqtaAdNfAFoCEdAoh+76pHZsnV9lChoBkdAb1JNi6QNkWgHTYIBaAhHQKIgcZrpJPJ1fZQoaAZHQG4PnJT2nKpoB02LAWgIR0CiITHBtUGWdX2UKGgGR0Bs270UXYUWaAdNUwFoCEdAoiJozabnYHV9lChoBkdAa0ied07r9mgHTV8BaAhHQKIjELSeAd51fZQoaAZHQGqfP/JeVs1oB03VAmgIR0CiJQLwe/5+dX2UKGgGR0BtsGl67dzoaAdNewFoCEdAoiW0/0NBnnV9lChoBkdAcTIKzRhMJ2gHTY4BaAhHQKImcZLIxQB1fZQoaAZHQG49x/EwWWRoB02AAWgIR0CiJ9xBu4wzdX2UKGgGR0Bwcpmz0HyFaAdNUgFoCEdAoiiwOQQtjHV9lChoBkdAcZKkmx+rl2gHTSMBaAhHQKIpZ4HHFP11fZQoaAZHQHAFUuL74ztoB01XAWgIR0CiKwM+FDfFdX2UKGgGR0BsliPMjeKsaAdNZgFoCEdAoiv2nyd4FHV9lChoBkdAcC9QKrq+rWgHTWoBaAhHQKIssxX4j8l1fZQoaAZHQHFG/9tMwlBoB02hAWgIR0CiLhU5lvqDdX2UKGgGR0Bwmyogmqo7aAdNTwFoCEdAoi6tD+irUHV9lChoBkdAcaiuPmxMWWgHTWkBaAhHQKIv4UzKs+51fZQoaAZHQHC33OjZcs1oB02JAWgIR0CiMJfKISDidX2UKGgGR0Bx4HP2PDHfaAdNKAFoCEdAojEhprULD3V9lChoBkdAPQRYA80UGmgHTUQBaAhHQKIySFgUlAx1fZQoaAZHQHCEBtHhCMRoB01XAWgIR0CiMuroW56MdX2UKGgGR0BuqPDNyHVPaAdNbwFoCEdAojOcwztTk3V9lChoBkdAcGC5WRzRyGgHTWkBaAhHQKI02Vwgkkd1fZQoaAZHQHGUoA80UGpoB017AWgIR0CiNZPoFFDwdX2UKGgGR0Bvw/q7iADraAdNcAFoCEdAojZDJp35e3V9lChoBkdAcDapNsWO62gHTZsBaAhHQKI3mBIWgvl1fZQoaAZHQG65Ina37UJoB02SAWgIR0CiOFT3AVO9dX2UKGgGR0BLnxASnLq2aAdNJgFoCEdAojjdnIyTIXV9lChoBkdAazDs3Q2MsGgHTWABaAhHQKI6HqbjLjh1fZQoaAZHQHBlt3KSxJNoB02NAWgIR0CiOtU3wTdtdX2UKGgGR0BxIotPHktFaAdNLAFoCEdAojtnjdYW+HV9lChoBkdAcJNJLdvbXmgHTYkBaAhHQKI8s67ulXR1fZQoaAZHQHEPOYplSTBoB02tAWgIR0CiPYdP+GXYdX2UKGgGR0Bv7jSRbKRuaAdNggFoCEdAoj7cfV7QcHV9lChoBkdAb+0qR2bG3mgHTXIBaAhHQKI/jjm0VrR1fZQoaAZHQG0tAB1cMVloB012AWgIR0CiQEaXBxgidX2UKGgGR0Bqcd+mWMS9aAdNVQFoCEdAokHxvR7Z4HV9lChoBkdAb6UTGHYYi2gHTZoBaAhHQKJC7ZVXFLp1fZQoaAZHQGt4N70Fr2xoB01dAWgIR0CiQ9bfgrH3dX2UKGgGR0BslmRcNYr8aAdNXQFoCEdAokVuZ7Xxv3V9lChoBkdAavHY8Md92GgHTWEBaAhHQKJGGtXgccV1fZQoaAZHQHEVu+h4+r5oB00jAWgIR0CiRqRAKOT8dX2UKGgGR0BxNnJiiItUaAdN5QFoCEdAokgdNzr/sHV9lChoBkdAcFJMfA9FF2gHTXIBaAhHQKJIyZJCjUN1fZQoaAZHQG4EblaKUFBoB02AAmgIR0CiSpsMI/qxdX2UKGgGR0BtO8YCQtBfaAdNTQFoCEdAoktNy5qdpnVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3960,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c7cd3472d6ba203a879fa1b493b95bafca7a4d3b67725ab384863253b7cf4bb
3
+ size 87978
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e46e6b0f8d1ea7617b9da5a91bbe27bb8ddf39e7651cff05cd5a20133fca97b
3
+ size 43634
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu121
5
+ - GPU Enabled: False
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (200 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 214.5245825, "std_reward": 71.33319445834584, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-02-09T08:13:35.926836"}