docs: add README.md
Browse files
README.md
CHANGED
@@ -1,13 +1,23 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
library_name: transformers
|
|
|
|
|
3 |
tags: []
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
10 |
-
|
11 |
|
12 |
## Model Details
|
13 |
|
@@ -15,15 +25,16 @@ tags: []
|
|
15 |
|
16 |
<!-- Provide a longer summary of what this model is. -->
|
17 |
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
|
20 |
-
|
|
|
21 |
- **Funded by [optional]:** [More Information Needed]
|
22 |
- **Shared by [optional]:** [More Information Needed]
|
23 |
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):**
|
25 |
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:**
|
|
|
27 |
|
28 |
### Model Sources [optional]
|
29 |
|
@@ -41,7 +52,29 @@ This is the model card of a 🤗 transformers model that has been pushed on the
|
|
41 |
|
42 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
### Downstream Use [optional]
|
47 |
|
@@ -75,11 +108,229 @@ Use the code below to get started with the model.
|
|
75 |
|
76 |
## Training Details
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
### Training Data
|
79 |
|
80 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
### Training Procedure
|
85 |
|
@@ -89,10 +340,50 @@ Use the code below to get started with the model.
|
|
89 |
|
90 |
[More Information Needed]
|
91 |
|
92 |
-
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
#### Speeds, Sizes, Times [optional]
|
98 |
|
@@ -144,11 +435,11 @@ Use the code below to get started with the model.
|
|
144 |
|
145 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
|
147 |
-
- **Hardware Type:**
|
148 |
-
- **Hours used:**
|
149 |
- **Cloud Provider:** [More Information Needed]
|
150 |
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [
|
152 |
|
153 |
## Technical Specifications [optional]
|
154 |
|
@@ -196,4 +487,4 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
196 |
|
197 |
## Model Card Contact
|
198 |
|
199 |
-
[
|
|
|
1 |
---
|
2 |
+
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
|
3 |
+
# Doc / guide: https://huggingface.co/docs/hub/model-cards
|
4 |
+
base_model:
|
5 |
+
- HuggingFaceTB/SmolLM-135M-Instruct
|
6 |
+
datasets: []
|
7 |
+
languages:
|
8 |
+
- en
|
9 |
library_name: transformers
|
10 |
+
metrics: []
|
11 |
+
pipeline_tag: text-generation
|
12 |
tags: []
|
13 |
+
|
14 |
---
|
15 |
|
16 |
+
# Model Card for ldp72/Test-SmolLM-Marcel-codecarbon2
|
17 |
|
18 |
<!-- Provide a quick summary of what the model is/does. -->
|
19 |
|
20 |
+
This model was finetuned by performing instruct tuning on Telco domain datatsets.
|
21 |
|
22 |
## Model Details
|
23 |
|
|
|
25 |
|
26 |
<!-- Provide a longer summary of what this model is. -->
|
27 |
|
|
|
28 |
|
29 |
+
|
30 |
+
- **Developed by:** Orange
|
31 |
- **Funded by [optional]:** [More Information Needed]
|
32 |
- **Shared by [optional]:** [More Information Needed]
|
33 |
- **Model type:** [More Information Needed]
|
34 |
+
- **Language(s) (NLP):** English
|
35 |
- **License:** [More Information Needed]
|
36 |
+
- **Finetuned from model [optional]:** HuggingFaceTB/SmolLM-135M-Instruct
|
37 |
+
- **Date [optional]:** 2025-08-28 16:18:47
|
38 |
|
39 |
### Model Sources [optional]
|
40 |
|
|
|
52 |
|
53 |
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
54 |
|
55 |
+
This model can be used with the `transformers` library using `pipeline` abstraction as follows:
|
56 |
+
|
57 |
+
```python
|
58 |
+
import torch
|
59 |
+
from transformers import pipeline
|
60 |
+
|
61 |
+
model_id = "ldp72/Test-SmolLM-Marcel-codecarbon2"
|
62 |
+
pipe = pipeline(
|
63 |
+
"text-generation",
|
64 |
+
model=model_id,
|
65 |
+
torch_dtype=torch.bfloat16,
|
66 |
+
device_map="auto",
|
67 |
+
)
|
68 |
+
messages = [
|
69 |
+
{"role": "system", "content": "You are chatbot specialized on Telco domain."},
|
70 |
+
{"role": "user", "content": "Can you give a sample of your specialized knowledge?"},
|
71 |
+
]
|
72 |
+
outputs = pipe(
|
73 |
+
messages,
|
74 |
+
max_new_tokens=256,
|
75 |
+
)
|
76 |
+
print(outputs[0]["generated_text"][-1])
|
77 |
+
```
|
78 |
|
79 |
### Downstream Use [optional]
|
80 |
|
|
|
108 |
|
109 |
## Training Details
|
110 |
|
111 |
+
This model was finetuned with [Orange internal fine tuning tools](https://gitlab.tech.orange/NEPAL/knowledge/orangelm/lm-adaptation/) with the Docker Image tagged `0.1.2` in the [registry](https://gitlab.tech.orange/NEPAL/knowledge/orangelm/lm-adaptation/container_registry/84664) and the following configuration file:
|
112 |
+
|
113 |
+
```yaml
|
114 |
+
data:
|
115 |
+
dataset_name:
|
116 |
+
train:
|
117 |
+
- path: telco-lm/arxiv-abstract-generation-telco-instructions
|
118 |
+
revision: legacy
|
119 |
+
- path: telco-lm/synthetic-dsp.stackexchange.com-multi-task-telco-instructions
|
120 |
+
revision: legacy
|
121 |
+
- path: telco-lm/synthetic-networkengineering.stackexchange.com-multi-task-telco-instructions
|
122 |
+
revision: legacy
|
123 |
+
- path: telco-lm/synthetic-security.stackexchange.com-multi-task-telco-instructions
|
124 |
+
revision: legacy
|
125 |
+
- path: telco-lm/synthetic-technical-3gpp-multi-task-telco-instructions
|
126 |
+
revision: legacy
|
127 |
+
- path: telco-lm/synthetic-technical-5gamericas-multi-task-telco-instructions
|
128 |
+
revision: legacy
|
129 |
+
- path: telco-lm/synthetic-technical-huawei-multi-task-telco-instructions
|
130 |
+
revision: legacy
|
131 |
+
- path: telco-lm/synthetic-technical-itu-multi-task-telco-instructions
|
132 |
+
revision: legacy
|
133 |
+
- path: telco-lm/synthetic-technical-mef-multi-task-telco-instructions
|
134 |
+
revision: legacy
|
135 |
+
- path: telco-lm/synthetic-technical-ngmn-multi-task-telco-instructions
|
136 |
+
revision: legacy
|
137 |
+
- path: telco-lm/synthetic-technical-rfc-multi-task-telco-instructions
|
138 |
+
revision: legacy
|
139 |
+
- path: telco-lm/teleqna-mcqa-cot-telco-instructions
|
140 |
+
revision: legacy
|
141 |
+
- path: telco-lm/tii-huawei-qa-open-qa-telco-instructions
|
142 |
+
revision: legacy
|
143 |
+
validation_abstract_generation:
|
144 |
+
- path: telco-lm/arxiv-abstract-generation-telco-instructions
|
145 |
+
revision: legacy
|
146 |
+
split: validation
|
147 |
+
validation_general:
|
148 |
+
- path: telco-lm/slim-orca-multi-task-general-instructions
|
149 |
+
revision: legacy
|
150 |
+
split: validation
|
151 |
+
validation_synthetic:
|
152 |
+
- path: telco-lm/synthetic-dsp.stackexchange.com-multi-task-telco-instructions
|
153 |
+
revision: legacy
|
154 |
+
split: validation
|
155 |
+
- path: telco-lm/synthetic-security.stackexchange.com-multi-task-telco-instructions
|
156 |
+
revision: legacy
|
157 |
+
split: validation
|
158 |
+
- path: telco-lm/synthetic-networkengineering.stackexchange.com-multi-task-telco-instructions
|
159 |
+
revision: legacy
|
160 |
+
split: validation
|
161 |
+
- path: telco-lm/synthetic-technical-rfc-multi-task-telco-instructions
|
162 |
+
revision: legacy
|
163 |
+
split: validation
|
164 |
+
- path: telco-lm/synthetic-technical-3gpp-multi-task-telco-instructions
|
165 |
+
revision: legacy
|
166 |
+
split: validation
|
167 |
+
- path: telco-lm/synthetic-technical-5gamericas-multi-task-telco-instructions
|
168 |
+
revision: legacy
|
169 |
+
split: validation
|
170 |
+
- path: telco-lm/synthetic-technical-itu-multi-task-telco-instructions
|
171 |
+
revision: legacy
|
172 |
+
split: validation
|
173 |
+
- path: telco-lm/synthetic-technical-mef-multi-task-telco-instructions
|
174 |
+
revision: legacy
|
175 |
+
split: validation
|
176 |
+
- path: telco-lm/synthetic-technical-huawei-multi-task-telco-instructions
|
177 |
+
revision: legacy
|
178 |
+
split: validation
|
179 |
+
- path: telco-lm/synthetic-technical-ngmn-multi-task-telco-instructions
|
180 |
+
revision: legacy
|
181 |
+
split: validation
|
182 |
+
validation_telco_qa:
|
183 |
+
- path: telco-lm/tii-huawei-qa-open-qa-telco-instructions
|
184 |
+
revision: legacy
|
185 |
+
split: validation
|
186 |
+
validation_telco_qcm:
|
187 |
+
- path: telco-lm/teleqna-mcqa-cot-telco-instructions
|
188 |
+
revision: legacy
|
189 |
+
split: validation
|
190 |
+
debug: true
|
191 |
+
implementation_name: instructions
|
192 |
+
description:
|
193 |
+
contributors:
|
194 |
+
- email: [email protected]
|
195 |
+
first_name: Loïc
|
196 |
+
last_name: Fosse
|
197 |
+
- email: [email protected]
|
198 |
+
first_name: Lionel
|
199 |
+
last_name: Delphin-Poulat
|
200 |
+
- email: [email protected]
|
201 |
+
first_name: Ismaël
|
202 |
+
last_name: Rousseau
|
203 |
+
domain: Telco
|
204 |
+
languages:
|
205 |
+
- en
|
206 |
+
model_name: ldp72/Test-SmolLM-Marcel-codecarbon2
|
207 |
+
image:
|
208 |
+
version: 0.1.2
|
209 |
+
model:
|
210 |
+
attn_implementation: flash_attention_2
|
211 |
+
chat_template_tokenizer: HuggingFaceTB/SmolLM-135M-Instruct
|
212 |
+
model_name_or_path: HuggingFaceTB/SmolLM-135M-Instruct
|
213 |
+
trust_remote_code: true
|
214 |
+
training:
|
215 |
+
bf16: true
|
216 |
+
dataloader_num_workers: 4
|
217 |
+
dataloader_persistent_workers: true
|
218 |
+
dataloader_pin_memory: true
|
219 |
+
dataloader_prefetch_factor: 2
|
220 |
+
deepspeed: /config/zero3.json
|
221 |
+
disable_tqdm: true
|
222 |
+
eval_accumulation_steps: 1
|
223 |
+
eval_steps: 10
|
224 |
+
eval_strategy: steps
|
225 |
+
fp16: false
|
226 |
+
gradient_accumulation_steps: 2
|
227 |
+
gradient_checkpointing: true
|
228 |
+
group_by_length: false
|
229 |
+
learning_rate: 2.0e-05
|
230 |
+
log_level: debug
|
231 |
+
logging_dir: /outputs/Telco-SmolLM-135-Instruct-it-test-codecarbon-process-push/logs
|
232 |
+
logging_steps: 10
|
233 |
+
lr_scheduler_type: cosine
|
234 |
+
max_grad_norm: 1.0
|
235 |
+
max_steps: -1
|
236 |
+
num_train_epochs: 2
|
237 |
+
optim: paged_adamw_32bit
|
238 |
+
output_dir: /outputs/Telco-SmolLM-135-Instruct-it-test-codecarbon-process-push
|
239 |
+
per_device_eval_batch_size: 2
|
240 |
+
per_device_train_batch_size: 2
|
241 |
+
push_to_hub: false
|
242 |
+
report_to: tensorboard
|
243 |
+
save_steps: 0
|
244 |
+
save_strategy: epoch
|
245 |
+
save_total_limit: 1
|
246 |
+
seed: 42
|
247 |
+
torch_compile: false
|
248 |
+
training_type: instruct-tuning
|
249 |
+
use_liger_kernel: false
|
250 |
+
warmup_ratio: 0.05
|
251 |
+
weight_decay: 0.1
|
252 |
+
```
|
253 |
+
|
254 |
+
The model was trained on 1 gpus with at least 40GB on each gpu.
|
255 |
+
|
256 |
+
The model was trained using [deepspeed](https://www.deepspeed.ai/) with the following configuration file:
|
257 |
+
|
258 |
+
```json
|
259 |
+
{
|
260 |
+
"fp16": {
|
261 |
+
"enabled": "auto",
|
262 |
+
"loss_scale": 0,
|
263 |
+
"loss_scale_window": 1000,
|
264 |
+
"initial_scale_power": 16,
|
265 |
+
"hysteresis": 2,
|
266 |
+
"min_loss_scale": 1
|
267 |
+
},
|
268 |
+
"bf16": {
|
269 |
+
"enabled": "auto"
|
270 |
+
},
|
271 |
+
"zero_optimization": {
|
272 |
+
"stage": 3,
|
273 |
+
"offload_optimizer": {
|
274 |
+
"device": "cpu",
|
275 |
+
"pin_memory": true
|
276 |
+
},
|
277 |
+
"offload_param": {
|
278 |
+
"device": "cpu",
|
279 |
+
"pin_memory": true
|
280 |
+
},
|
281 |
+
"overlap_comm": true,
|
282 |
+
"contiguous_gradients": true,
|
283 |
+
"sub_group_size": "1e9",
|
284 |
+
"reduce_bucket_size": "auto",
|
285 |
+
"stage3_prefetch_bucket_size": "auto",
|
286 |
+
"stage3_param_persistence_threshold": "auto",
|
287 |
+
"stage3_max_live_parameters": "1e9",
|
288 |
+
"stage3_max_reuse_distance": "1e9",
|
289 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
290 |
+
},
|
291 |
+
"gradient_accumulation_steps": "auto",
|
292 |
+
"gradient_clipping": "auto",
|
293 |
+
"steps_per_print": 2000,
|
294 |
+
"train_batch_size": "auto",
|
295 |
+
"train_micro_batch_size_per_gpu": "auto",
|
296 |
+
"wall_clock_breakdown": false
|
297 |
+
}
|
298 |
+
```
|
299 |
+
|
300 |
### Training Data
|
301 |
|
302 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
303 |
|
304 |
+
This model was trained on the following datasets:
|
305 |
+
|
306 |
+
```yaml
|
307 |
+
- path: telco-lm/arxiv-abstract-generation-telco-instructions
|
308 |
+
revision: legacy
|
309 |
+
- path: telco-lm/synthetic-dsp.stackexchange.com-multi-task-telco-instructions
|
310 |
+
revision: legacy
|
311 |
+
- path: telco-lm/synthetic-networkengineering.stackexchange.com-multi-task-telco-instructions
|
312 |
+
revision: legacy
|
313 |
+
- path: telco-lm/synthetic-security.stackexchange.com-multi-task-telco-instructions
|
314 |
+
revision: legacy
|
315 |
+
- path: telco-lm/synthetic-technical-3gpp-multi-task-telco-instructions
|
316 |
+
revision: legacy
|
317 |
+
- path: telco-lm/synthetic-technical-5gamericas-multi-task-telco-instructions
|
318 |
+
revision: legacy
|
319 |
+
- path: telco-lm/synthetic-technical-huawei-multi-task-telco-instructions
|
320 |
+
revision: legacy
|
321 |
+
- path: telco-lm/synthetic-technical-itu-multi-task-telco-instructions
|
322 |
+
revision: legacy
|
323 |
+
- path: telco-lm/synthetic-technical-mef-multi-task-telco-instructions
|
324 |
+
revision: legacy
|
325 |
+
- path: telco-lm/synthetic-technical-ngmn-multi-task-telco-instructions
|
326 |
+
revision: legacy
|
327 |
+
- path: telco-lm/synthetic-technical-rfc-multi-task-telco-instructions
|
328 |
+
revision: legacy
|
329 |
+
- path: telco-lm/teleqna-mcqa-cot-telco-instructions
|
330 |
+
revision: legacy
|
331 |
+
- path: telco-lm/tii-huawei-qa-open-qa-telco-instructions
|
332 |
+
revision: legacy
|
333 |
+
```
|
334 |
|
335 |
### Training Procedure
|
336 |
|
|
|
340 |
|
341 |
[More Information Needed]
|
342 |
|
|
|
343 |
#### Training Hyperparameters
|
344 |
|
345 |
+
<!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
346 |
+
|
347 |
+
- **Training regime:** This model was trained with the following hyperparameters for `SFTTrainer`,other parameters were set as default:
|
348 |
+
|
349 |
+
```yaml
|
350 |
+
bf16: true
|
351 |
+
dataloader_num_workers: 4
|
352 |
+
dataloader_persistent_workers: true
|
353 |
+
dataloader_pin_memory: true
|
354 |
+
dataloader_prefetch_factor: 2
|
355 |
+
deepspeed: /config/zero3.json
|
356 |
+
disable_tqdm: true
|
357 |
+
eval_accumulation_steps: 1
|
358 |
+
eval_steps: 10
|
359 |
+
eval_strategy: steps
|
360 |
+
fp16: false
|
361 |
+
gradient_accumulation_steps: 2
|
362 |
+
gradient_checkpointing: true
|
363 |
+
group_by_length: false
|
364 |
+
learning_rate: 2.0e-05
|
365 |
+
log_level: debug
|
366 |
+
logging_dir: /outputs/Telco-SmolLM-135-Instruct-it-test-codecarbon-process-push/logs
|
367 |
+
logging_steps: 10
|
368 |
+
lr_scheduler_type: cosine
|
369 |
+
max_grad_norm: 1.0
|
370 |
+
max_steps: -1
|
371 |
+
num_train_epochs: 2
|
372 |
+
optim: paged_adamw_32bit
|
373 |
+
output_dir: /outputs/Telco-SmolLM-135-Instruct-it-test-codecarbon-process-push
|
374 |
+
per_device_eval_batch_size: 2
|
375 |
+
per_device_train_batch_size: 2
|
376 |
+
push_to_hub: false
|
377 |
+
report_to: tensorboard
|
378 |
+
save_steps: 0
|
379 |
+
save_strategy: epoch
|
380 |
+
save_total_limit: 1
|
381 |
+
seed: 42
|
382 |
+
torch_compile: false
|
383 |
+
use_liger_kernel: false
|
384 |
+
warmup_ratio: 0.05
|
385 |
+
weight_decay: 0.1
|
386 |
+
```
|
387 |
|
388 |
#### Speeds, Sizes, Times [optional]
|
389 |
|
|
|
435 |
|
436 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
437 |
|
438 |
+
- **Hardware Type:** CPUs: AMD EPYC 7282 16-Core Processor; GPUs: 1 x NVIDIA A100-PCIE-40GB
|
439 |
+
- **Hours used:** 0:10:44
|
440 |
- **Cloud Provider:** [More Information Needed]
|
441 |
- **Compute Region:** [More Information Needed]
|
442 |
+
- **Carbon Emitted:** 0.00089 kg CO2eq, detailed emissions can be found in [`emissions.csv`](./emissions.csv) (emissions were computed using [`codecarbon`](https://codecarbon.io/))
|
443 |
|
444 |
## Technical Specifications [optional]
|
445 |
|
|
|
487 |
|
488 |
## Model Card Contact
|
489 |
|
490 |
+
Thanks to [Loïc Fosse](mailto:[email protected]), [Lionel Delphin-Poulat](mailto:[email protected]), [Ismaël Rousseau](mailto:[email protected]) for adding this model.
|