lchiang commited on
Commit
88e67fa
·
1 Parent(s): 2a7dc6c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -1
README.md CHANGED
@@ -4,9 +4,36 @@ tags:
4
  - generated_from_trainer
5
  datasets:
6
  - cne-layoutlmv3-data
 
 
 
 
 
7
  model-index:
8
  - name: layoutlmv3-finetuned-cne_100
9
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -15,6 +42,12 @@ should probably proofread and complete it, then remove this comment. -->
15
  # layoutlmv3-finetuned-cne_100
16
 
17
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cne-layoutlmv3-data dataset.
 
 
 
 
 
 
18
 
19
  ## Model description
20
 
@@ -41,6 +74,22 @@ The following hyperparameters were used during training:
41
  - lr_scheduler_type: linear
42
  - training_steps: 2500
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  ### Framework versions
45
 
46
  - Transformers 4.30.2
 
4
  - generated_from_trainer
5
  datasets:
6
  - cne-layoutlmv3-data
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
  model-index:
13
  - name: layoutlmv3-finetuned-cne_100
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: cne-layoutlmv3-data
20
+ type: cne-layoutlmv3-data
21
+ config: cne-dataset
22
+ split: test
23
+ args: cne-dataset
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9950738916256158
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9950738916256158
31
+ - name: F1
32
+ type: f1
33
+ value: 0.9950738916256159
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9992716678805535
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
42
  # layoutlmv3-finetuned-cne_100
43
 
44
  This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cne-layoutlmv3-data dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.0008
47
+ - Precision: 0.9951
48
+ - Recall: 0.9951
49
+ - F1: 0.9951
50
+ - Accuracy: 0.9993
51
 
52
  ## Model description
53
 
 
74
  - lr_scheduler_type: linear
75
  - training_steps: 2500
76
 
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 7.81 | 250 | 0.0028 | 0.9951 | 0.9951 | 0.9951 | 0.9993 |
82
+ | 0.0229 | 15.62 | 500 | 0.0015 | 0.9951 | 0.9951 | 0.9951 | 0.9993 |
83
+ | 0.0229 | 23.44 | 750 | 0.0011 | 0.9951 | 0.9951 | 0.9951 | 0.9993 |
84
+ | 0.0031 | 31.25 | 1000 | 0.0009 | 0.9951 | 0.9951 | 0.9951 | 0.9993 |
85
+ | 0.0031 | 39.06 | 1250 | 0.0009 | 0.9951 | 0.9951 | 0.9951 | 0.9993 |
86
+ | 0.0019 | 46.88 | 1500 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 |
87
+ | 0.0019 | 54.69 | 1750 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 |
88
+ | 0.0014 | 62.5 | 2000 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 |
89
+ | 0.0014 | 70.31 | 2250 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 |
90
+ | 0.001 | 78.12 | 2500 | 0.0008 | 0.9951 | 0.9951 | 0.9951 | 0.9993 |
91
+
92
+
93
  ### Framework versions
94
 
95
  - Transformers 4.30.2