File size: 8,928 Bytes
849663f d0557cb 849663f d0557cb 134d312 74f9469 c74d2a2 74f9469 d0557cb 74f9469 134d312 d0557cb 134d312 d0557cb 134d312 74f9469 d0557cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
import spacy
from spacy.language import Language
from typing import List
from spacy.util import registry, compile_suffix_regex
from spacy.tokenizer import Tokenizer
from spacy.util import registry
import unicodedata
from typing import Dict, Any
from spacy.language import Language
import re
# ----- que_exceptions ----- #
que_exceptions = [] # type: List[str]
# quisque / quique
que_exceptions += [
"quisque",
"quidque",
"quicque",
"quodque",
"cuiusque",
"cuique",
"quemque",
"quamque",
"quoque",
"quaque",
"quique",
"quaeque",
"quorumque",
"quarumque",
"quibusque",
"quosque",
"quasque",
]
# uterque
que_exceptions += [
"uterque",
"utraque",
"utrumque",
"utriusque",
"utrique",
"utrumque",
"utramque",
"utroque",
"utraque",
"utrique",
"utraeque",
"utrorumque",
"utrarumque",
"utrisque",
"utrosque",
"utrasque",
]
# quiscumque
que_exceptions += [
"quicumque",
"quidcumque",
"quodcumque",
"cuiuscumque",
"cuicumque",
"quemcumque",
"quamcumque",
"quocumque",
"quacumque",
"quicumque",
"quaecumque",
"quorumcumque",
"quarumcumque",
"quibuscumque",
"quoscumque",
"quascumque",
]
# unuscumque
que_exceptions += [
"unusquisque",
"unaquaeque",
"unumquodque",
"unumquidque",
"uniuscuiusque",
"unicuique",
"unumquemque",
"unamquamque",
"unoquoque",
"unaquaque",
]
# plerusque
que_exceptions += [
"plerusque",
"pleraque",
"plerumque",
"plerique",
"pleraeque",
"pleroque",
"pleramque",
"plerorumque",
"plerarumque",
"plerisque",
"plerosque",
"plerasque",
]
# misc
que_exceptions += [
"absque",
"abusque",
"adaeque",
"adusque",
"aeque",
"antique",
"atque",
"circumundique",
"conseque",
"cumque",
"cunque",
"denique",
"deque",
"donique",
"hucusque",
"inique",
"inseque",
"itaque",
"longinque",
"namque",
"neque",
"oblique",
"peraeque",
"praecoque",
"propinque",
"qualiscumque",
"quandocumque",
"quandoque",
"quantuluscumque",
"quantumcumque",
"quantuscumque",
"quinque",
"quocumque",
"quomodocumque",
"quomque",
"quotacumque",
"quotcumque",
"quotienscumque",
"quotiensque",
"quotusquisque",
"quousque",
"relinque",
"simulatque",
"torque",
"ubicumque",
"ubique",
"undecumque",
"undique",
"usque",
"usquequaque",
"utcumque",
"utercumque",
"utique",
"utrimque",
"utrique",
"utriusque",
"utrobique",
"utrubique",
]
# ---------- #
# ----- lookup_lemmatizer ----- #
from spacy.language import Language
from spacy.lookups import load_lookups
from spacy.tokens import Token
from spacy.lookups import Lookups
import string
blank_nlp = spacy.blank("la")
lookups = Lookups()
lookups_data = load_lookups(lang=blank_nlp.vocab.lang, tables=["lemma_lookup"])
LOOKUPS = lookups_data.get_table("lemma_lookup")
Token.set_extension(
"predicted_lemma", default=None, force=True
) # TODO: test that this works
@Language.component(name="lookup_lemmatizer")
def make_lookup_lemmatizer_function(doc):
for token in doc:
token._.predicted_lemma = token.lemma_
# Handle punctuation
if token.text in string.punctuation:
token.lemma_ = token.text
token.pos_ = "PUNCT"
token.tag_ = "punc"
# Handle "que" enclitics
if token.text == "que" and (
token.pos_ == "CCONJ" or token.tag_ == "conjunction"
):
token.lemma_ = token.text
# Lookup lemmatizer
token.lemma_ = LOOKUPS.get(token.text, token.lemma_)
# Better handle capitalization
if token.text[0].isupper() and token.text not in LOOKUPS:
token.lemma_ = LOOKUPS.get(token.text.lower(), token.lemma_)
return doc
# ---------- #
# ----- trf_vectors ----- #
from spacy.language import Language
from spacy.tokens import Doc
import numpy as np
@Language.factory("trf_vectors")
class TrfContextualVectors:
"""
Spacy pipeline which add transformer vectors to each token based on user hooks.
https://spacy.io/usage/processing-pipelines#custom-components-user-hooks
https://github.com/explosion/spaCy/discussions/6511
"""
def __init__(self, nlp: Language, name: str):
self.name = name
Doc.set_extension("trf_token_vecs", default=None)
def __call__(self, sdoc):
# inject hooks from this class into the pipeline
if type(sdoc) == str:
sdoc = self._nlp(sdoc)
# pre-calculate all vectors for every token:
# calculate groups for spacy token boundaries in the trf vectors
vec_idx_splits = np.cumsum(sdoc._.trf_data.align.lengths)
# get transformer vectors and reshape them into one large continous tensor
trf_vecs = sdoc._.trf_data.tensors[0].reshape(-1, 768)
# calculate mapping groups from spacy tokens to transformer vector indices
vec_idxs = np.split(sdoc._.trf_data.align.dataXd, vec_idx_splits)
# take sum of mapped transformer vector indices for spacy vectors
vecs = np.stack([trf_vecs[idx].sum(0) for idx in vec_idxs[:-1]])
sdoc._.trf_token_vecs = vecs
sdoc.user_token_hooks["vector"] = self.vector
sdoc.user_token_hooks["has_vector"] = self.has_vector
return sdoc
def vector(self, token):
return token.doc._.trf_token_vecs[token.i]
def has_vector(self, token):
return True
# ---------- #
# ----- normer ----- #
import unicodedata
from spacy.language import Language
import spacy
@Language.component("normer")
def normer(doc):
def norm(text):
return (
text.replace("v", "u").replace("j", "i").replace("V", "U").replace("J", "I")
)
for token in doc:
token.norm_ = norm(token.norm_)
return doc
# ---------- #
# ----- remorpher ----- #
from spacy.language import Language
from spacy.tokens import Token, MorphAnalysis
Token.set_extension("remorph", default=None, force=True)
@Language.component("remorpher")
def remorpher(doc):
for token in doc:
token._.remorph = token.morph
morph = token.morph.to_dict()
if morph.get("Tense"):
if morph["Tense"] == "Perf" or morph["Tense"] == "Imp":
morph["Tense"] = "Past"
elif morph["Tense"] == "FutPerf":
morph["Tense"] = "Fut"
token.set_morph(morph)
return doc
# ---------- #
# ----- customize_tokenizer ----- #
@registry.tokenizers("latin_core_tokenizer")
def create_latin_tokenizer():
def create_tokenizer(nlp):
tokenizer = LatinTokenizer(nlp.vocab)
# Add que-splitting
suffixes = nlp.Defaults.suffixes + ["que", "qve"]
suffix_regex = compile_suffix_regex(suffixes)
tokenizer.suffix_search = suffix_regex.search
# Add special cases
for item in que_exceptions:
tokenizer.add_special_case(item, [{"ORTH": item}])
tokenizer.add_special_case(item.lower(), [{"ORTH": item.lower()}])
tokenizer.add_special_case(item.title(), [{"ORTH": item.title()}])
tokenizer.add_special_case(item.upper(), [{"ORTH": item.upper()}])
return tokenizer
return create_tokenizer
class LatinTokenizer(Tokenizer):
def separate_ligatures(self, text: str) -> str:
"""Convert ligatures while preserving case"""
result = text
result = result.replace("Æ", "Ae").replace("Œ", "Oe")
result = result.replace("æ", "ae").replace("œ", "oe")
return result
def remove_macrons(self, text: str) -> str:
"""Remove macrons while preserving case"""
macron_map = str.maketrans("āēīōūȳĀĒĪŌŪȲ", "aeiouyAEIOUY")
return text.translate(macron_map)
def remove_accents(self, text: str) -> str:
"""Remove diacritical marks"""
return "".join(
c
for c in unicodedata.normalize("NFD", text)
if unicodedata.category(c) != "Mn"
)
def norm_spacing(self, text: str) -> str:
"""Normalize spacing and strip whitespace"""
return re.sub(r"\s+", " ", text).strip()
def preprocess(self, text: str) -> str:
"""Apply all preprocessing steps in sequence"""
text = self.separate_ligatures(text)
text = self.remove_macrons(text)
text = self.remove_accents(text)
text = self.norm_spacing(text)
return text
def __call__(self, text):
"""Process text before tokenization"""
processed_text = self.preprocess(text)
return super().__call__(processed_text)
# ---------- #
if __name__ == "__main__":
pass
|