File size: 8,928 Bytes
849663f
 
 
 
 
d0557cb
 
 
 
 
 
 
 
 
849663f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0557cb
134d312
74f9469
 
 
 
 
 
 
 
 
 
 
c74d2a2
74f9469
 
 
d0557cb
74f9469
 
 
134d312
 
 
d0557cb
 
134d312
 
 
 
 
 
 
 
 
 
 
 
 
d0557cb
134d312
 
 
 
 
 
74f9469
 
 
d0557cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import spacy
from spacy.language import Language
from typing import List
from spacy.util import registry, compile_suffix_regex

from spacy.tokenizer import Tokenizer
from spacy.util import registry
import unicodedata
from typing import Dict, Any
from spacy.language import Language

import re

# ----- que_exceptions ----- #
que_exceptions = []  # type: List[str]

# quisque / quique
que_exceptions += [
    "quisque",
    "quidque",
    "quicque",
    "quodque",
    "cuiusque",
    "cuique",
    "quemque",
    "quamque",
    "quoque",
    "quaque",
    "quique",
    "quaeque",
    "quorumque",
    "quarumque",
    "quibusque",
    "quosque",
    "quasque",
]

# uterque
que_exceptions += [
    "uterque",
    "utraque",
    "utrumque",
    "utriusque",
    "utrique",
    "utrumque",
    "utramque",
    "utroque",
    "utraque",
    "utrique",
    "utraeque",
    "utrorumque",
    "utrarumque",
    "utrisque",
    "utrosque",
    "utrasque",
]

# quiscumque
que_exceptions += [
    "quicumque",
    "quidcumque",
    "quodcumque",
    "cuiuscumque",
    "cuicumque",
    "quemcumque",
    "quamcumque",
    "quocumque",
    "quacumque",
    "quicumque",
    "quaecumque",
    "quorumcumque",
    "quarumcumque",
    "quibuscumque",
    "quoscumque",
    "quascumque",
]

# unuscumque
que_exceptions += [
    "unusquisque",
    "unaquaeque",
    "unumquodque",
    "unumquidque",
    "uniuscuiusque",
    "unicuique",
    "unumquemque",
    "unamquamque",
    "unoquoque",
    "unaquaque",
]

# plerusque
que_exceptions += [
    "plerusque",
    "pleraque",
    "plerumque",
    "plerique",
    "pleraeque",
    "pleroque",
    "pleramque",
    "plerorumque",
    "plerarumque",
    "plerisque",
    "plerosque",
    "plerasque",
]

# misc
que_exceptions += [
    "absque",
    "abusque",
    "adaeque",
    "adusque",
    "aeque",
    "antique",
    "atque",
    "circumundique",
    "conseque",
    "cumque",
    "cunque",
    "denique",
    "deque",
    "donique",
    "hucusque",
    "inique",
    "inseque",
    "itaque",
    "longinque",
    "namque",
    "neque",
    "oblique",
    "peraeque",
    "praecoque",
    "propinque",
    "qualiscumque",
    "quandocumque",
    "quandoque",
    "quantuluscumque",
    "quantumcumque",
    "quantuscumque",
    "quinque",
    "quocumque",
    "quomodocumque",
    "quomque",
    "quotacumque",
    "quotcumque",
    "quotienscumque",
    "quotiensque",
    "quotusquisque",
    "quousque",
    "relinque",
    "simulatque",
    "torque",
    "ubicumque",
    "ubique",
    "undecumque",
    "undique",
    "usque",
    "usquequaque",
    "utcumque",
    "utercumque",
    "utique",
    "utrimque",
    "utrique",
    "utriusque",
    "utrobique",
    "utrubique",
]

# ---------- #

# ----- lookup_lemmatizer ----- #
from spacy.language import Language
from spacy.lookups import load_lookups
from spacy.tokens import Token
from spacy.lookups import Lookups
import string

blank_nlp = spacy.blank("la")
lookups = Lookups()


lookups_data = load_lookups(lang=blank_nlp.vocab.lang, tables=["lemma_lookup"])
LOOKUPS = lookups_data.get_table("lemma_lookup")

Token.set_extension(
    "predicted_lemma", default=None, force=True
)  # TODO: test that this works


@Language.component(name="lookup_lemmatizer")
def make_lookup_lemmatizer_function(doc):
    for token in doc:
        token._.predicted_lemma = token.lemma_

        # Handle punctuation
        if token.text in string.punctuation:
            token.lemma_ = token.text
            token.pos_ = "PUNCT"
            token.tag_ = "punc"

        # Handle "que" enclitics
        if token.text == "que" and (
            token.pos_ == "CCONJ" or token.tag_ == "conjunction"
        ):
            token.lemma_ = token.text

        # Lookup lemmatizer

        token.lemma_ = LOOKUPS.get(token.text, token.lemma_)

        # Better handle capitalization
        if token.text[0].isupper() and token.text not in LOOKUPS:
            token.lemma_ = LOOKUPS.get(token.text.lower(), token.lemma_)
    return doc


# ---------- #

# ----- trf_vectors ----- #

from spacy.language import Language
from spacy.tokens import Doc
import numpy as np


@Language.factory("trf_vectors")
class TrfContextualVectors:
    """
    Spacy pipeline which add transformer vectors to each token based on user hooks.
    https://spacy.io/usage/processing-pipelines#custom-components-user-hooks
    https://github.com/explosion/spaCy/discussions/6511
    """

    def __init__(self, nlp: Language, name: str):
        self.name = name
        Doc.set_extension("trf_token_vecs", default=None)

    def __call__(self, sdoc):
        # inject hooks from this class into the pipeline
        if type(sdoc) == str:
            sdoc = self._nlp(sdoc)

        # pre-calculate all vectors for every token:

        # calculate groups for spacy token boundaries in the trf vectors
        vec_idx_splits = np.cumsum(sdoc._.trf_data.align.lengths)
        # get transformer vectors and reshape them into one large continous tensor
        trf_vecs = sdoc._.trf_data.tensors[0].reshape(-1, 768)
        # calculate mapping groups from spacy tokens to transformer vector indices
        vec_idxs = np.split(sdoc._.trf_data.align.dataXd, vec_idx_splits)

        # take sum of mapped transformer vector indices for spacy vectors
        vecs = np.stack([trf_vecs[idx].sum(0) for idx in vec_idxs[:-1]])
        sdoc._.trf_token_vecs = vecs

        sdoc.user_token_hooks["vector"] = self.vector
        sdoc.user_token_hooks["has_vector"] = self.has_vector
        return sdoc

    def vector(self, token):
        return token.doc._.trf_token_vecs[token.i]

    def has_vector(self, token):
        return True


# ---------- #

# ----- normer ----- #
import unicodedata
from spacy.language import Language
import spacy


@Language.component("normer")
def normer(doc):
    def norm(text):
        return (
            text.replace("v", "u").replace("j", "i").replace("V", "U").replace("J", "I")
        )

    for token in doc:
        token.norm_ = norm(token.norm_)

    return doc


# ---------- #

# ----- remorpher ----- #

from spacy.language import Language
from spacy.tokens import Token, MorphAnalysis

Token.set_extension("remorph", default=None, force=True)


@Language.component("remorpher")
def remorpher(doc):
    for token in doc:
        token._.remorph = token.morph
        morph = token.morph.to_dict()
        if morph.get("Tense"):
            if morph["Tense"] == "Perf" or morph["Tense"] == "Imp":
                morph["Tense"] = "Past"
            elif morph["Tense"] == "FutPerf":
                morph["Tense"] = "Fut"
        token.set_morph(morph)
    return doc


# ---------- #


# ----- customize_tokenizer ----- #
@registry.tokenizers("latin_core_tokenizer")
def create_latin_tokenizer():
    def create_tokenizer(nlp):
        tokenizer = LatinTokenizer(nlp.vocab)

        # Add que-splitting
        suffixes = nlp.Defaults.suffixes + ["que", "qve"]
        suffix_regex = compile_suffix_regex(suffixes)
        tokenizer.suffix_search = suffix_regex.search

        # Add special cases
        for item in que_exceptions:
            tokenizer.add_special_case(item, [{"ORTH": item}])
            tokenizer.add_special_case(item.lower(), [{"ORTH": item.lower()}])
            tokenizer.add_special_case(item.title(), [{"ORTH": item.title()}])
            tokenizer.add_special_case(item.upper(), [{"ORTH": item.upper()}])

        return tokenizer

    return create_tokenizer


class LatinTokenizer(Tokenizer):
    def separate_ligatures(self, text: str) -> str:
        """Convert ligatures while preserving case"""
        result = text
        result = result.replace("Æ", "Ae").replace("Œ", "Oe")
        result = result.replace("æ", "ae").replace("œ", "oe")
        return result

    def remove_macrons(self, text: str) -> str:
        """Remove macrons while preserving case"""
        macron_map = str.maketrans("āēīōūȳĀĒĪŌŪȲ", "aeiouyAEIOUY")
        return text.translate(macron_map)

    def remove_accents(self, text: str) -> str:
        """Remove diacritical marks"""
        return "".join(
            c
            for c in unicodedata.normalize("NFD", text)
            if unicodedata.category(c) != "Mn"
        )

    def norm_spacing(self, text: str) -> str:
        """Normalize spacing and strip whitespace"""
        return re.sub(r"\s+", " ", text).strip()

    def preprocess(self, text: str) -> str:
        """Apply all preprocessing steps in sequence"""
        text = self.separate_ligatures(text)
        text = self.remove_macrons(text)
        text = self.remove_accents(text)
        text = self.norm_spacing(text)
        return text

    def __call__(self, text):
        """Process text before tokenization"""
        processed_text = self.preprocess(text)
        return super().__call__(processed_text)


# ---------- #


if __name__ == "__main__":
    pass