Upload 15 files
Browse files- README.md +71 -0
- adapter_config.json +28 -0
- adapter_model.safetensors +3 -0
- all_results.json +12 -0
- eval_results.json +7 -0
- special_tokens_map.json +18 -0
- tokenization_chatglm.py +328 -0
- tokenizer.model +3 -0
- tokenizer_config.json +65 -0
- train_results.json +8 -0
- trainer_log.jsonl +81 -0
- trainer_state.json +590 -0
- training_args.bin +3 -0
- training_eval_loss.png +0 -0
- training_loss.png +0 -0
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- llama-factory
|
6 |
+
- lora
|
7 |
+
- generated_from_trainer
|
8 |
+
base_model: THUDM/chatglm3-6b
|
9 |
+
model-index:
|
10 |
+
- name: LangGPT
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# LangGPT
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [/datas/huangyijie/my_model/chatglm3-6b](https://huggingface.co//datas/huangyijie/my_model/chatglm3-6b) on the LangGPT dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.8991
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 12
|
42 |
+
- eval_batch_size: 4
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 8
|
45 |
+
- total_train_batch_size: 96
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: cosine
|
48 |
+
- lr_scheduler_warmup_steps: 20
|
49 |
+
- num_epochs: 9.0
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
56 |
+
| 1.0558 | 1.25 | 100 | 1.0500 |
|
57 |
+
| 0.9566 | 2.5 | 200 | 0.9630 |
|
58 |
+
| 0.9082 | 3.75 | 300 | 0.9288 |
|
59 |
+
| 0.8992 | 5.0 | 400 | 0.9108 |
|
60 |
+
| 0.8874 | 6.25 | 500 | 0.9028 |
|
61 |
+
| 0.8835 | 7.5 | 600 | 0.8997 |
|
62 |
+
| 0.8912 | 8.75 | 700 | 0.8991 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- PEFT 0.10.0
|
68 |
+
- Transformers 4.40.1
|
69 |
+
- Pytorch 2.2.0+cu121
|
70 |
+
- Datasets 2.16.1
|
71 |
+
- Tokenizers 0.19.1
|
adapter_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "THUDM/chatglm3-6b",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.0,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"query_key_value"
|
24 |
+
],
|
25 |
+
"task_type": "CAUSAL_LM",
|
26 |
+
"use_dora": false,
|
27 |
+
"use_rslora": false
|
28 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:404f0a92a53d60d0eb9cfabc139cc99740bb4ff315929bf64fcccd2fead20436
|
3 |
+
size 7807744
|
all_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 9.0,
|
3 |
+
"eval_loss": 0.8991448283195496,
|
4 |
+
"eval_runtime": 353.2745,
|
5 |
+
"eval_samples_per_second": 2.417,
|
6 |
+
"eval_steps_per_second": 0.606,
|
7 |
+
"total_flos": 2.5580424283828716e+18,
|
8 |
+
"train_loss": 0.9693152533637153,
|
9 |
+
"train_runtime": 60193.9387,
|
10 |
+
"train_samples_per_second": 1.148,
|
11 |
+
"train_steps_per_second": 0.012
|
12 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 9.0,
|
3 |
+
"eval_loss": 0.8991448283195496,
|
4 |
+
"eval_runtime": 353.2745,
|
5 |
+
"eval_samples_per_second": 2.417,
|
6 |
+
"eval_steps_per_second": 0.606
|
7 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<|user|>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"content": "<|observation|>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
}
|
17 |
+
]
|
18 |
+
}
|
tokenization_chatglm.py
ADDED
@@ -0,0 +1,328 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import re
|
4 |
+
from typing import List, Optional, Union, Dict
|
5 |
+
from sentencepiece import SentencePieceProcessor
|
6 |
+
from transformers import PreTrainedTokenizer
|
7 |
+
from transformers.utils import logging, PaddingStrategy
|
8 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
9 |
+
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
class SPTokenizer:
|
15 |
+
def __init__(self, model_path: str):
|
16 |
+
# reload tokenizer
|
17 |
+
assert os.path.isfile(model_path), model_path
|
18 |
+
self.sp_model = SentencePieceProcessor(model_file=model_path)
|
19 |
+
|
20 |
+
# BOS / EOS token IDs
|
21 |
+
self.n_words: int = self.sp_model.vocab_size()
|
22 |
+
self.bos_id: int = self.sp_model.bos_id()
|
23 |
+
self.eos_id: int = self.sp_model.eos_id()
|
24 |
+
self.pad_id: int = self.sp_model.unk_id()
|
25 |
+
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
|
26 |
+
|
27 |
+
role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
|
28 |
+
special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
|
29 |
+
self.special_tokens = {}
|
30 |
+
self.index_special_tokens = {}
|
31 |
+
for token in special_tokens:
|
32 |
+
self.special_tokens[token] = self.n_words
|
33 |
+
self.index_special_tokens[self.n_words] = token
|
34 |
+
self.n_words += 1
|
35 |
+
self.role_special_token_expression = "|".join([re.escape(token) for token in special_tokens]) # for apply_chat_template
|
36 |
+
|
37 |
+
def tokenize(self, s: str, encode_special_tokens=False):
|
38 |
+
if encode_special_tokens:
|
39 |
+
last_index = 0
|
40 |
+
t = []
|
41 |
+
for match in re.finditer(self.role_special_token_expression, s):
|
42 |
+
if last_index < match.start():
|
43 |
+
t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
|
44 |
+
t.append(s[match.start():match.end()])
|
45 |
+
last_index = match.end()
|
46 |
+
if last_index < len(s):
|
47 |
+
t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
|
48 |
+
return t
|
49 |
+
else:
|
50 |
+
return self.sp_model.EncodeAsPieces(s)
|
51 |
+
|
52 |
+
def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
|
53 |
+
assert type(s) is str
|
54 |
+
t = self.sp_model.encode(s)
|
55 |
+
if bos:
|
56 |
+
t = [self.bos_id] + t
|
57 |
+
if eos:
|
58 |
+
t = t + [self.eos_id]
|
59 |
+
return t
|
60 |
+
|
61 |
+
def decode(self, t: List[int]) -> str:
|
62 |
+
text, buffer = "", []
|
63 |
+
for token in t:
|
64 |
+
if token in self.index_special_tokens:
|
65 |
+
if buffer:
|
66 |
+
text += self.sp_model.decode(buffer)
|
67 |
+
buffer = []
|
68 |
+
text += self.index_special_tokens[token]
|
69 |
+
else:
|
70 |
+
buffer.append(token)
|
71 |
+
if buffer:
|
72 |
+
text += self.sp_model.decode(buffer)
|
73 |
+
return text
|
74 |
+
|
75 |
+
def decode_tokens(self, tokens: List[str]) -> str:
|
76 |
+
text = self.sp_model.DecodePieces(tokens)
|
77 |
+
return text
|
78 |
+
|
79 |
+
def convert_token_to_id(self, token):
|
80 |
+
""" Converts a token (str) in an id using the vocab. """
|
81 |
+
if token in self.special_tokens:
|
82 |
+
return self.special_tokens[token]
|
83 |
+
return self.sp_model.PieceToId(token)
|
84 |
+
|
85 |
+
def convert_id_to_token(self, index):
|
86 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
87 |
+
if index in self.index_special_tokens:
|
88 |
+
return self.index_special_tokens[index]
|
89 |
+
if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0 or index > self.sp_model.vocab_size():
|
90 |
+
return ""
|
91 |
+
return self.sp_model.IdToPiece(index)
|
92 |
+
|
93 |
+
|
94 |
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
95 |
+
|
96 |
+
vocab_files_names = {"vocab_file": "tokenizer.model"}
|
97 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
vocab_file,
|
102 |
+
padding_side="left",
|
103 |
+
clean_up_tokenization_spaces=False,
|
104 |
+
encode_special_tokens=False,
|
105 |
+
**kwargs
|
106 |
+
):
|
107 |
+
self.name = "GLMTokenizer"
|
108 |
+
self.vocab_file = vocab_file
|
109 |
+
self.tokenizer = SPTokenizer(vocab_file)
|
110 |
+
self.special_tokens = {
|
111 |
+
"<bos>": self.tokenizer.bos_id,
|
112 |
+
"<eos>": self.tokenizer.eos_id,
|
113 |
+
"<unk>": self.tokenizer.pad_id,
|
114 |
+
"<pad>": self.tokenizer.pad_id
|
115 |
+
}
|
116 |
+
self.encode_special_tokens = encode_special_tokens
|
117 |
+
|
118 |
+
super().__init__(
|
119 |
+
padding_side=padding_side,
|
120 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
121 |
+
**kwargs
|
122 |
+
)
|
123 |
+
|
124 |
+
def get_command(self, token):
|
125 |
+
if token in self.special_tokens:
|
126 |
+
return self.special_tokens[token]
|
127 |
+
assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
|
128 |
+
return self.tokenizer.special_tokens[token]
|
129 |
+
|
130 |
+
@property
|
131 |
+
def unk_token(self) -> str:
|
132 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<unk>"))
|
133 |
+
|
134 |
+
@property
|
135 |
+
def pad_token(self) -> str:
|
136 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<pad>"))
|
137 |
+
|
138 |
+
@property
|
139 |
+
def eos_token(self) -> str:
|
140 |
+
return self.tokenizer.sp_model.IdToPiece(self.get_command("<eos>"))
|
141 |
+
|
142 |
+
@property
|
143 |
+
def unk_token_id(self) -> int:
|
144 |
+
return self.get_command("<unk>")
|
145 |
+
|
146 |
+
@property
|
147 |
+
def pad_token_id(self) -> int:
|
148 |
+
return self.get_command("<pad>")
|
149 |
+
|
150 |
+
@property
|
151 |
+
def eos_token_id(self):
|
152 |
+
return self.get_command("<eos>")
|
153 |
+
|
154 |
+
@unk_token.setter
|
155 |
+
def unk_token(self, value):
|
156 |
+
logger.warning("Setting unk_token is not supported, use the default one.")
|
157 |
+
|
158 |
+
@pad_token.setter
|
159 |
+
def pad_token(self, value):
|
160 |
+
logger.warning("Setting pad_token is not supported, use the default one.")
|
161 |
+
|
162 |
+
@eos_token.setter
|
163 |
+
def eos_token(self, value):
|
164 |
+
logger.warning("Setting eos_token is not supported, use the default one.")
|
165 |
+
|
166 |
+
@property
|
167 |
+
def vocab_size(self):
|
168 |
+
return self.tokenizer.n_words
|
169 |
+
|
170 |
+
def get_vocab(self):
|
171 |
+
""" Returns vocab as a dict """
|
172 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
173 |
+
vocab.update(self.added_tokens_encoder)
|
174 |
+
return vocab
|
175 |
+
|
176 |
+
def _tokenize(self, text, **kwargs):
|
177 |
+
return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
|
178 |
+
|
179 |
+
def _convert_token_to_id(self, token):
|
180 |
+
""" Converts a token (str) in an id using the vocab. """
|
181 |
+
return self.tokenizer.convert_token_to_id(token)
|
182 |
+
|
183 |
+
def _convert_id_to_token(self, index):
|
184 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
185 |
+
return self.tokenizer.convert_id_to_token(index)
|
186 |
+
|
187 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
188 |
+
return self.tokenizer.decode_tokens(tokens)
|
189 |
+
|
190 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
191 |
+
"""
|
192 |
+
Save the vocabulary and special tokens file to a directory.
|
193 |
+
|
194 |
+
Args:
|
195 |
+
save_directory (`str`):
|
196 |
+
The directory in which to save the vocabulary.
|
197 |
+
filename_prefix (`str`, *optional*):
|
198 |
+
An optional prefix to add to the named of the saved files.
|
199 |
+
|
200 |
+
Returns:
|
201 |
+
`Tuple(str)`: Paths to the files saved.
|
202 |
+
"""
|
203 |
+
if os.path.isdir(save_directory):
|
204 |
+
vocab_file = os.path.join(
|
205 |
+
save_directory, self.vocab_files_names["vocab_file"]
|
206 |
+
)
|
207 |
+
else:
|
208 |
+
vocab_file = save_directory
|
209 |
+
|
210 |
+
with open(self.vocab_file, 'rb') as fin:
|
211 |
+
proto_str = fin.read()
|
212 |
+
|
213 |
+
with open(vocab_file, "wb") as writer:
|
214 |
+
writer.write(proto_str)
|
215 |
+
|
216 |
+
return (vocab_file,)
|
217 |
+
|
218 |
+
def get_prefix_tokens(self):
|
219 |
+
prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
|
220 |
+
return prefix_tokens
|
221 |
+
|
222 |
+
def build_single_message(self, role, metadata, message):
|
223 |
+
assert role in ["system", "user", "assistant", "observation"], role
|
224 |
+
role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
|
225 |
+
message_tokens = self.tokenizer.encode(message)
|
226 |
+
tokens = role_tokens + message_tokens
|
227 |
+
return tokens
|
228 |
+
|
229 |
+
def build_chat_input(self, query, history=None, role="user"):
|
230 |
+
if history is None:
|
231 |
+
history = []
|
232 |
+
input_ids = []
|
233 |
+
for item in history:
|
234 |
+
content = item["content"]
|
235 |
+
if item["role"] == "system" and "tools" in item:
|
236 |
+
content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
|
237 |
+
input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
|
238 |
+
input_ids.extend(self.build_single_message(role, "", query))
|
239 |
+
input_ids.extend([self.get_command("<|assistant|>")])
|
240 |
+
return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
|
241 |
+
|
242 |
+
def build_inputs_with_special_tokens(
|
243 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
244 |
+
) -> List[int]:
|
245 |
+
"""
|
246 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
247 |
+
adding special tokens. A BERT sequence has the following format:
|
248 |
+
|
249 |
+
- single sequence: `[CLS] X [SEP]`
|
250 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
251 |
+
|
252 |
+
Args:
|
253 |
+
token_ids_0 (`List[int]`):
|
254 |
+
List of IDs to which the special tokens will be added.
|
255 |
+
token_ids_1 (`List[int]`, *optional*):
|
256 |
+
Optional second list of IDs for sequence pairs.
|
257 |
+
|
258 |
+
Returns:
|
259 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
260 |
+
"""
|
261 |
+
prefix_tokens = self.get_prefix_tokens()
|
262 |
+
token_ids_0 = prefix_tokens + token_ids_0
|
263 |
+
if token_ids_1 is not None:
|
264 |
+
token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
|
265 |
+
return token_ids_0
|
266 |
+
|
267 |
+
def _pad(
|
268 |
+
self,
|
269 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
270 |
+
max_length: Optional[int] = None,
|
271 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
272 |
+
pad_to_multiple_of: Optional[int] = None,
|
273 |
+
return_attention_mask: Optional[bool] = None,
|
274 |
+
) -> dict:
|
275 |
+
"""
|
276 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
277 |
+
|
278 |
+
Args:
|
279 |
+
encoded_inputs:
|
280 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
281 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
282 |
+
Will truncate by taking into account the special tokens.
|
283 |
+
padding_strategy: PaddingStrategy to use for padding.
|
284 |
+
|
285 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
286 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
287 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
288 |
+
The tokenizer padding sides are defined in self.padding_side:
|
289 |
+
|
290 |
+
- 'left': pads on the left of the sequences
|
291 |
+
- 'right': pads on the right of the sequences
|
292 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
293 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
294 |
+
`>= 7.5` (Volta).
|
295 |
+
return_attention_mask:
|
296 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
297 |
+
"""
|
298 |
+
# Load from model defaults
|
299 |
+
assert self.padding_side == "left"
|
300 |
+
|
301 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
302 |
+
seq_length = len(required_input)
|
303 |
+
|
304 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
305 |
+
max_length = len(required_input)
|
306 |
+
|
307 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
308 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
309 |
+
|
310 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
311 |
+
|
312 |
+
# Initialize attention mask if not present.
|
313 |
+
if "attention_mask" not in encoded_inputs:
|
314 |
+
encoded_inputs["attention_mask"] = [1] * seq_length
|
315 |
+
|
316 |
+
if "position_ids" not in encoded_inputs:
|
317 |
+
encoded_inputs["position_ids"] = list(range(seq_length))
|
318 |
+
|
319 |
+
if needs_to_be_padded:
|
320 |
+
difference = max_length - len(required_input)
|
321 |
+
|
322 |
+
if "attention_mask" in encoded_inputs:
|
323 |
+
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
|
324 |
+
if "position_ids" in encoded_inputs:
|
325 |
+
encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
|
326 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
327 |
+
|
328 |
+
return encoded_inputs
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7dc4c393423b76e4373e5157ddc34803a0189ba96b21ddbb40269d31468a6f2
|
3 |
+
size 1018370
|
tokenizer_config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"64790": {
|
4 |
+
"content": "[gMASK]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": false
|
10 |
+
},
|
11 |
+
"64792": {
|
12 |
+
"content": "sop",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": true,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": false
|
18 |
+
},
|
19 |
+
"64795": {
|
20 |
+
"content": "<|user|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"64796": {
|
28 |
+
"content": "<|assistant|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
},
|
35 |
+
"64797": {
|
36 |
+
"content": "<|observation|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [
|
45 |
+
"<|user|>",
|
46 |
+
"<|observation|>"
|
47 |
+
],
|
48 |
+
"auto_map": {
|
49 |
+
"AutoTokenizer": [
|
50 |
+
"tokenization_chatglm.ChatGLMTokenizer",
|
51 |
+
null
|
52 |
+
]
|
53 |
+
},
|
54 |
+
"chat_template": "{% for message in messages %}{% if loop.first %}[gMASK]sop<|{{ message['role'] }}|>\n {{ message['content'] }}{% else %}<|{{ message['role'] }}|>\n {{ message['content'] }}{% endif %}{% endfor %}{% if add_generation_prompt %}<|assistant|>{% endif %}",
|
55 |
+
"clean_up_tokenization_spaces": false,
|
56 |
+
"do_lower_case": false,
|
57 |
+
"eos_token": "</s>",
|
58 |
+
"model_max_length": 1000000000000000019884624838656,
|
59 |
+
"pad_token": "<unk>",
|
60 |
+
"padding_side": "right",
|
61 |
+
"remove_space": false,
|
62 |
+
"split_special_tokens": false,
|
63 |
+
"tokenizer_class": "ChatGLMTokenizer",
|
64 |
+
"unk_token": "<unk>"
|
65 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 9.0,
|
3 |
+
"total_flos": 2.5580424283828716e+18,
|
4 |
+
"train_loss": 0.9693152533637153,
|
5 |
+
"train_runtime": 60193.9387,
|
6 |
+
"train_samples_per_second": 1.148,
|
7 |
+
"train_steps_per_second": 0.012
|
8 |
+
}
|
trainer_log.jsonl
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"current_steps": 10, "total_steps": 720, "loss": 1.6827, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.5e-05, "epoch": 0.125, "percentage": 1.39, "elapsed_time": "0:13:23", "remaining_time": "15:50:19"}
|
2 |
+
{"current_steps": 20, "total_steps": 720, "loss": 1.6309, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 5e-05, "epoch": 0.25, "percentage": 2.78, "elapsed_time": "0:26:45", "remaining_time": "15:36:27"}
|
3 |
+
{"current_steps": 30, "total_steps": 720, "loss": 1.5415, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.997482666353287e-05, "epoch": 0.375, "percentage": 4.17, "elapsed_time": "0:40:07", "remaining_time": "15:22:55"}
|
4 |
+
{"current_steps": 40, "total_steps": 720, "loss": 1.393, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.989935734988098e-05, "epoch": 0.5, "percentage": 5.56, "elapsed_time": "0:53:29", "remaining_time": "15:09:26"}
|
5 |
+
{"current_steps": 50, "total_steps": 720, "loss": 1.2563, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.977374404419837e-05, "epoch": 0.625, "percentage": 6.94, "elapsed_time": "1:06:51", "remaining_time": "14:55:59"}
|
6 |
+
{"current_steps": 60, "total_steps": 720, "loss": 1.1963, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.959823971496574e-05, "epoch": 0.75, "percentage": 8.33, "elapsed_time": "1:20:14", "remaining_time": "14:42:34"}
|
7 |
+
{"current_steps": 70, "total_steps": 720, "loss": 1.1385, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.937319780454559e-05, "epoch": 0.875, "percentage": 9.72, "elapsed_time": "1:33:36", "remaining_time": "14:29:08"}
|
8 |
+
{"current_steps": 80, "total_steps": 720, "loss": 1.1085, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.909907151739633e-05, "epoch": 1.0, "percentage": 11.11, "elapsed_time": "1:46:56", "remaining_time": "14:15:30"}
|
9 |
+
{"current_steps": 90, "total_steps": 720, "loss": 1.1025, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.877641290737884e-05, "epoch": 1.125, "percentage": 12.5, "elapsed_time": "2:00:18", "remaining_time": "14:02:06"}
|
10 |
+
{"current_steps": 100, "total_steps": 720, "loss": 1.0558, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.8405871765993433e-05, "epoch": 1.25, "percentage": 13.89, "elapsed_time": "2:13:40", "remaining_time": "13:48:45"}
|
11 |
+
{"current_steps": 100, "total_steps": 720, "loss": null, "eval_loss": 1.0500283241271973, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": null, "epoch": 1.25, "percentage": 13.89, "elapsed_time": "2:13:40", "remaining_time": "13:48:45"}
|
12 |
+
{"current_steps": 110, "total_steps": 720, "loss": 1.0258, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.7988194313786275e-05, "epoch": 1.375, "percentage": 15.28, "elapsed_time": "2:32:55", "remaining_time": "14:07:59"}
|
13 |
+
{"current_steps": 120, "total_steps": 720, "loss": 1.0261, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.752422169756048e-05, "epoch": 1.5, "percentage": 16.67, "elapsed_time": "2:46:16", "remaining_time": "13:51:24"}
|
14 |
+
{"current_steps": 130, "total_steps": 720, "loss": 0.9923, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.701488829641845e-05, "epoch": 1.625, "percentage": 18.06, "elapsed_time": "2:59:38", "remaining_time": "13:35:18"}
|
15 |
+
{"current_steps": 140, "total_steps": 720, "loss": 0.9835, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.6461219840046654e-05, "epoch": 1.75, "percentage": 19.44, "elapsed_time": "3:13:00", "remaining_time": "13:19:35"}
|
16 |
+
{"current_steps": 150, "total_steps": 720, "loss": 1.0039, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.586433134303257e-05, "epoch": 1.875, "percentage": 20.83, "elapsed_time": "3:26:22", "remaining_time": "13:04:12"}
|
17 |
+
{"current_steps": 160, "total_steps": 720, "loss": 0.9947, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.522542485937369e-05, "epoch": 2.0, "percentage": 22.22, "elapsed_time": "3:39:42", "remaining_time": "12:48:58"}
|
18 |
+
{"current_steps": 170, "total_steps": 720, "loss": 0.9821, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.454578706170075e-05, "epoch": 2.125, "percentage": 23.61, "elapsed_time": "3:53:04", "remaining_time": "12:34:03"}
|
19 |
+
{"current_steps": 180, "total_steps": 720, "loss": 0.9535, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.382678665009028e-05, "epoch": 2.25, "percentage": 25.0, "elapsed_time": "4:06:26", "remaining_time": "12:19:18"}
|
20 |
+
{"current_steps": 190, "total_steps": 720, "loss": 0.9514, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.306987159568479e-05, "epoch": 2.375, "percentage": 26.39, "elapsed_time": "4:19:47", "remaining_time": "12:04:42"}
|
21 |
+
{"current_steps": 200, "total_steps": 720, "loss": 0.9566, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.227656622467162e-05, "epoch": 2.5, "percentage": 27.78, "elapsed_time": "4:33:09", "remaining_time": "11:50:13"}
|
22 |
+
{"current_steps": 200, "total_steps": 720, "loss": null, "eval_loss": 0.9630343914031982, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": null, "epoch": 2.5, "percentage": 27.78, "elapsed_time": "4:33:09", "remaining_time": "11:50:13"}
|
23 |
+
{"current_steps": 210, "total_steps": 720, "loss": 0.9655, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.144846814849282e-05, "epoch": 2.625, "percentage": 29.17, "elapsed_time": "4:52:25", "remaining_time": "11:50:09"}
|
24 |
+
{"current_steps": 220, "total_steps": 720, "loss": 0.9537, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.058724504646834e-05, "epoch": 2.75, "percentage": 30.56, "elapsed_time": "5:05:46", "remaining_time": "11:34:56"}
|
25 |
+
{"current_steps": 230, "total_steps": 720, "loss": 0.951, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 3.969463130731183e-05, "epoch": 2.875, "percentage": 31.94, "elapsed_time": "5:19:08", "remaining_time": "11:19:54"}
|
26 |
+
{"current_steps": 240, "total_steps": 720, "loss": 0.938, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 3.8772424536302564e-05, "epoch": 3.0, "percentage": 33.33, "elapsed_time": "5:32:28", "remaining_time": "11:04:57"}
|
27 |
+
{"current_steps": 250, "total_steps": 720, "loss": 0.955, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 3.782248193514766e-05, "epoch": 3.125, "percentage": 34.72, "elapsed_time": "5:45:50", "remaining_time": "10:50:10"}
|
28 |
+
{"current_steps": 260, "total_steps": 720, "loss": 0.9319, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 3.6846716561824965e-05, "epoch": 3.25, "percentage": 36.11, "elapsed_time": "5:59:11", "remaining_time": "10:35:30"}
|
29 |
+
{"current_steps": 270, "total_steps": 720, "loss": 0.9385, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 3.5847093477938956e-05, "epoch": 3.375, "percentage": 37.5, "elapsed_time": "6:12:33", "remaining_time": "10:20:55"}
|
30 |
+
{"current_steps": 280, "total_steps": 720, "loss": 0.911, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 3.4825625791348096e-05, "epoch": 3.5, "percentage": 38.89, "elapsed_time": "6:25:54", "remaining_time": "10:06:26"}
|
31 |
+
{"current_steps": 290, "total_steps": 720, "loss": 0.9366, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 3.378437060203357e-05, "epoch": 3.625, "percentage": 40.28, "elapsed_time": "6:39:17", "remaining_time": "9:52:02"}
|
32 |
+
{"current_steps": 300, "total_steps": 720, "loss": 0.9082, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 3.272542485937369e-05, "epoch": 3.75, "percentage": 41.67, "elapsed_time": "6:52:38", "remaining_time": "9:37:42"}
|
33 |
+
{"current_steps": 300, "total_steps": 720, "loss": null, "eval_loss": 0.928753137588501, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": null, "epoch": 3.75, "percentage": 41.67, "elapsed_time": "6:52:38", "remaining_time": "9:37:42"}
|
34 |
+
{"current_steps": 310, "total_steps": 720, "loss": 0.9158, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 3.165092113916688e-05, "epoch": 3.875, "percentage": 43.06, "elapsed_time": "7:11:54", "remaining_time": "9:31:13"}
|
35 |
+
{"current_steps": 320, "total_steps": 720, "loss": 0.9027, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 3.056302334890786e-05, "epoch": 4.0, "percentage": 44.44, "elapsed_time": "7:25:14", "remaining_time": "9:16:32"}
|
36 |
+
{"current_steps": 330, "total_steps": 720, "loss": 0.9336, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.9463922369965917e-05, "epoch": 4.125, "percentage": 45.83, "elapsed_time": "7:38:36", "remaining_time": "9:01:59"}
|
37 |
+
{"current_steps": 340, "total_steps": 720, "loss": 0.9161, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.8355831645441388e-05, "epoch": 4.25, "percentage": 47.22, "elapsed_time": "7:51:58", "remaining_time": "8:47:30"}
|
38 |
+
{"current_steps": 350, "total_steps": 720, "loss": 0.8966, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.724098272258584e-05, "epoch": 4.375, "percentage": 48.61, "elapsed_time": "8:05:20", "remaining_time": "8:33:04"}
|
39 |
+
{"current_steps": 360, "total_steps": 720, "loss": 0.8954, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.6121620758762877e-05, "epoch": 4.5, "percentage": 50.0, "elapsed_time": "8:18:42", "remaining_time": "8:18:42"}
|
40 |
+
{"current_steps": 370, "total_steps": 720, "loss": 0.8815, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.5e-05, "epoch": 4.625, "percentage": 51.39, "elapsed_time": "8:32:04", "remaining_time": "8:04:24"}
|
41 |
+
{"current_steps": 380, "total_steps": 720, "loss": 0.89, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.3878379241237136e-05, "epoch": 4.75, "percentage": 52.78, "elapsed_time": "8:45:26", "remaining_time": "7:50:08"}
|
42 |
+
{"current_steps": 390, "total_steps": 720, "loss": 0.9196, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.2759017277414166e-05, "epoch": 4.875, "percentage": 54.17, "elapsed_time": "8:58:48", "remaining_time": "7:35:55"}
|
43 |
+
{"current_steps": 400, "total_steps": 720, "loss": 0.8992, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.164416835455862e-05, "epoch": 5.0, "percentage": 55.56, "elapsed_time": "9:12:08", "remaining_time": "7:21:43"}
|
44 |
+
{"current_steps": 400, "total_steps": 720, "loss": null, "eval_loss": 0.9107962846755981, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": null, "epoch": 5.0, "percentage": 55.56, "elapsed_time": "9:12:08", "remaining_time": "7:21:43"}
|
45 |
+
{"current_steps": 410, "total_steps": 720, "loss": 0.888, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.0536077630034086e-05, "epoch": 5.125, "percentage": 56.94, "elapsed_time": "9:31:24", "remaining_time": "7:12:02"}
|
46 |
+
{"current_steps": 420, "total_steps": 720, "loss": 0.8901, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 1.9436976651092144e-05, "epoch": 5.25, "percentage": 58.33, "elapsed_time": "9:44:46", "remaining_time": "6:57:41"}
|
47 |
+
{"current_steps": 430, "total_steps": 720, "loss": 0.9147, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 1.8349078860833123e-05, "epoch": 5.375, "percentage": 59.72, "elapsed_time": "9:58:08", "remaining_time": "6:43:23"}
|
48 |
+
{"current_steps": 440, "total_steps": 720, "loss": 0.8925, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 1.7274575140626318e-05, "epoch": 5.5, "percentage": 61.11, "elapsed_time": "10:11:29", "remaining_time": "6:29:08"}
|
49 |
+
{"current_steps": 450, "total_steps": 720, "loss": 0.9012, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 1.621562939796643e-05, "epoch": 5.625, "percentage": 62.5, "elapsed_time": "10:24:51", "remaining_time": "6:14:55"}
|
50 |
+
{"current_steps": 460, "total_steps": 720, "loss": 0.8808, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 1.5174374208651912e-05, "epoch": 5.75, "percentage": 63.89, "elapsed_time": "10:38:13", "remaining_time": "6:00:44"}
|
51 |
+
{"current_steps": 470, "total_steps": 720, "loss": 0.8816, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 1.4152906522061048e-05, "epoch": 5.875, "percentage": 65.28, "elapsed_time": "10:51:35", "remaining_time": "5:46:35"}
|
52 |
+
{"current_steps": 480, "total_steps": 720, "loss": 0.8941, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 1.3153283438175034e-05, "epoch": 6.0, "percentage": 66.67, "elapsed_time": "11:04:55", "remaining_time": "5:32:27"}
|
53 |
+
{"current_steps": 490, "total_steps": 720, "loss": 0.9048, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 1.217751806485235e-05, "epoch": 6.125, "percentage": 68.06, "elapsed_time": "11:18:17", "remaining_time": "5:18:22"}
|
54 |
+
{"current_steps": 500, "total_steps": 720, "loss": 0.8874, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 1.122757546369744e-05, "epoch": 6.25, "percentage": 69.44, "elapsed_time": "11:31:39", "remaining_time": "5:04:19"}
|
55 |
+
{"current_steps": 500, "total_steps": 720, "loss": null, "eval_loss": 0.9028034806251526, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": null, "epoch": 6.25, "percentage": 69.44, "elapsed_time": "11:31:39", "remaining_time": "5:04:19"}
|
56 |
+
{"current_steps": 510, "total_steps": 720, "loss": 0.8738, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 1.0305368692688174e-05, "epoch": 6.375, "percentage": 70.83, "elapsed_time": "11:50:54", "remaining_time": "4:52:43"}
|
57 |
+
{"current_steps": 520, "total_steps": 720, "loss": 0.8951, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 9.412754953531663e-06, "epoch": 6.5, "percentage": 72.22, "elapsed_time": "12:04:16", "remaining_time": "4:38:33"}
|
58 |
+
{"current_steps": 530, "total_steps": 720, "loss": 0.8914, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 8.551531851507186e-06, "epoch": 6.625, "percentage": 73.61, "elapsed_time": "12:17:37", "remaining_time": "4:24:26"}
|
59 |
+
{"current_steps": 540, "total_steps": 720, "loss": 0.8818, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 7.723433775328384e-06, "epoch": 6.75, "percentage": 75.0, "elapsed_time": "12:30:59", "remaining_time": "4:10:19"}
|
60 |
+
{"current_steps": 550, "total_steps": 720, "loss": 0.8794, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 6.930128404315214e-06, "epoch": 6.875, "percentage": 76.39, "elapsed_time": "12:44:21", "remaining_time": "3:56:15"}
|
61 |
+
{"current_steps": 560, "total_steps": 720, "loss": 0.8814, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 6.173213349909729e-06, "epoch": 7.0, "percentage": 77.78, "elapsed_time": "12:57:41", "remaining_time": "3:42:11"}
|
62 |
+
{"current_steps": 570, "total_steps": 720, "loss": 0.8909, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 5.454212938299255e-06, "epoch": 7.125, "percentage": 79.17, "elapsed_time": "13:11:03", "remaining_time": "3:28:10"}
|
63 |
+
{"current_steps": 580, "total_steps": 720, "loss": 0.8737, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.7745751406263165e-06, "epoch": 7.25, "percentage": 80.56, "elapsed_time": "13:24:25", "remaining_time": "3:14:10"}
|
64 |
+
{"current_steps": 590, "total_steps": 720, "loss": 0.8937, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.135668656967434e-06, "epoch": 7.375, "percentage": 81.94, "elapsed_time": "13:37:47", "remaining_time": "3:00:11"}
|
65 |
+
{"current_steps": 600, "total_steps": 720, "loss": 0.8835, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 3.5387801599533475e-06, "epoch": 7.5, "percentage": 83.33, "elapsed_time": "13:51:09", "remaining_time": "2:46:13"}
|
66 |
+
{"current_steps": 600, "total_steps": 720, "loss": null, "eval_loss": 0.899681031703949, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": null, "epoch": 7.5, "percentage": 83.33, "elapsed_time": "13:51:09", "remaining_time": "2:46:13"}
|
67 |
+
{"current_steps": 610, "total_steps": 720, "loss": 0.8841, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.98511170358155e-06, "epoch": 7.625, "percentage": 84.72, "elapsed_time": "14:10:24", "remaining_time": "2:33:21"}
|
68 |
+
{"current_steps": 620, "total_steps": 720, "loss": 0.8979, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.475778302439524e-06, "epoch": 7.75, "percentage": 86.11, "elapsed_time": "14:23:46", "remaining_time": "2:19:19"}
|
69 |
+
{"current_steps": 630, "total_steps": 720, "loss": 0.8696, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.0118056862137357e-06, "epoch": 7.875, "percentage": 87.5, "elapsed_time": "14:37:08", "remaining_time": "2:05:18"}
|
70 |
+
{"current_steps": 640, "total_steps": 720, "loss": 0.8782, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 1.59412823400657e-06, "epoch": 8.0, "percentage": 88.89, "elapsed_time": "14:50:28", "remaining_time": "1:51:18"}
|
71 |
+
{"current_steps": 650, "total_steps": 720, "loss": 0.8873, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 1.2235870926211619e-06, "epoch": 8.125, "percentage": 90.28, "elapsed_time": "15:03:50", "remaining_time": "1:37:20"}
|
72 |
+
{"current_steps": 660, "total_steps": 720, "loss": 0.8737, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 9.009284826036691e-07, "epoch": 8.25, "percentage": 91.67, "elapsed_time": "15:17:11", "remaining_time": "1:23:22"}
|
73 |
+
{"current_steps": 670, "total_steps": 720, "loss": 0.8883, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 6.268021954544096e-07, "epoch": 8.375, "percentage": 93.06, "elapsed_time": "15:30:33", "remaining_time": "1:09:26"}
|
74 |
+
{"current_steps": 680, "total_steps": 720, "loss": 0.87, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 4.0176028503425835e-07, "epoch": 8.5, "percentage": 94.44, "elapsed_time": "15:43:54", "remaining_time": "0:55:31"}
|
75 |
+
{"current_steps": 690, "total_steps": 720, "loss": 0.8746, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.262559558016325e-07, "epoch": 8.625, "percentage": 95.83, "elapsed_time": "15:57:16", "remaining_time": "0:41:37"}
|
76 |
+
{"current_steps": 700, "total_steps": 720, "loss": 0.8912, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 1.006426501190233e-07, "epoch": 8.75, "percentage": 97.22, "elapsed_time": "16:10:38", "remaining_time": "0:27:43"}
|
77 |
+
{"current_steps": 700, "total_steps": 720, "loss": null, "eval_loss": 0.8991448283195496, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": null, "epoch": 8.75, "percentage": 97.22, "elapsed_time": "16:10:38", "remaining_time": "0:27:43"}
|
78 |
+
{"current_steps": 710, "total_steps": 720, "loss": 0.9007, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 2.5173336467135267e-08, "epoch": 8.875, "percentage": 98.61, "elapsed_time": "16:29:53", "remaining_time": "0:13:56"}
|
79 |
+
{"current_steps": 720, "total_steps": 720, "loss": 0.8796, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": 0.0, "epoch": 9.0, "percentage": 100.0, "elapsed_time": "16:43:13", "remaining_time": "0:00:00"}
|
80 |
+
{"current_steps": 720, "total_steps": 720, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": null, "epoch": 9.0, "percentage": 100.0, "elapsed_time": "16:43:13", "remaining_time": "0:00:00"}
|
81 |
+
{"current_steps": 214, "total_steps": 214, "loss": null, "eval_loss": 0.8991448283195496, "predict_loss": null, "reward": null, "accuracy": null, "learning_rate": null, "epoch": 9.0, "percentage": 100.0, "elapsed_time": "16:49:07", "remaining_time": "0:00:00"}
|
trainer_state.json
ADDED
@@ -0,0 +1,590 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.8991448283195496,
|
3 |
+
"best_model_checkpoint": "../../output/chatglm3-6b/LangGPT/checkpoint-700",
|
4 |
+
"epoch": 9.0,
|
5 |
+
"eval_steps": 100,
|
6 |
+
"global_step": 720,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.125,
|
13 |
+
"grad_norm": 0.40453147888183594,
|
14 |
+
"learning_rate": 2.5e-05,
|
15 |
+
"loss": 1.6827,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.25,
|
20 |
+
"grad_norm": 0.5551838874816895,
|
21 |
+
"learning_rate": 5e-05,
|
22 |
+
"loss": 1.6309,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.375,
|
27 |
+
"grad_norm": 0.7859359383583069,
|
28 |
+
"learning_rate": 4.997482666353287e-05,
|
29 |
+
"loss": 1.5415,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.5,
|
34 |
+
"grad_norm": 0.597720742225647,
|
35 |
+
"learning_rate": 4.989935734988098e-05,
|
36 |
+
"loss": 1.393,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.625,
|
41 |
+
"grad_norm": 0.4020984172821045,
|
42 |
+
"learning_rate": 4.977374404419837e-05,
|
43 |
+
"loss": 1.2563,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.75,
|
48 |
+
"grad_norm": 0.35916563868522644,
|
49 |
+
"learning_rate": 4.959823971496574e-05,
|
50 |
+
"loss": 1.1963,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.875,
|
55 |
+
"grad_norm": 0.3013848066329956,
|
56 |
+
"learning_rate": 4.937319780454559e-05,
|
57 |
+
"loss": 1.1385,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 1.0,
|
62 |
+
"grad_norm": 0.23849129676818848,
|
63 |
+
"learning_rate": 4.909907151739633e-05,
|
64 |
+
"loss": 1.1085,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 1.125,
|
69 |
+
"grad_norm": 0.22885890305042267,
|
70 |
+
"learning_rate": 4.877641290737884e-05,
|
71 |
+
"loss": 1.1025,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 1.25,
|
76 |
+
"grad_norm": 0.20683708786964417,
|
77 |
+
"learning_rate": 4.8405871765993433e-05,
|
78 |
+
"loss": 1.0558,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 1.25,
|
83 |
+
"eval_loss": 1.0500283241271973,
|
84 |
+
"eval_runtime": 353.0769,
|
85 |
+
"eval_samples_per_second": 2.419,
|
86 |
+
"eval_steps_per_second": 0.606,
|
87 |
+
"step": 100
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 1.375,
|
91 |
+
"grad_norm": 0.20663395524024963,
|
92 |
+
"learning_rate": 4.7988194313786275e-05,
|
93 |
+
"loss": 1.0258,
|
94 |
+
"step": 110
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 1.5,
|
98 |
+
"grad_norm": 0.18335361778736115,
|
99 |
+
"learning_rate": 4.752422169756048e-05,
|
100 |
+
"loss": 1.0261,
|
101 |
+
"step": 120
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 1.625,
|
105 |
+
"grad_norm": 0.18184833228588104,
|
106 |
+
"learning_rate": 4.701488829641845e-05,
|
107 |
+
"loss": 0.9923,
|
108 |
+
"step": 130
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 1.75,
|
112 |
+
"grad_norm": 0.19089923799037933,
|
113 |
+
"learning_rate": 4.6461219840046654e-05,
|
114 |
+
"loss": 0.9835,
|
115 |
+
"step": 140
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 1.875,
|
119 |
+
"grad_norm": 0.17791251838207245,
|
120 |
+
"learning_rate": 4.586433134303257e-05,
|
121 |
+
"loss": 1.0039,
|
122 |
+
"step": 150
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 2.0,
|
126 |
+
"grad_norm": 0.18376672267913818,
|
127 |
+
"learning_rate": 4.522542485937369e-05,
|
128 |
+
"loss": 0.9947,
|
129 |
+
"step": 160
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 2.125,
|
133 |
+
"grad_norm": 0.20052292943000793,
|
134 |
+
"learning_rate": 4.454578706170075e-05,
|
135 |
+
"loss": 0.9821,
|
136 |
+
"step": 170
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 2.25,
|
140 |
+
"grad_norm": 0.19209513068199158,
|
141 |
+
"learning_rate": 4.382678665009028e-05,
|
142 |
+
"loss": 0.9535,
|
143 |
+
"step": 180
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 2.375,
|
147 |
+
"grad_norm": 0.19733993709087372,
|
148 |
+
"learning_rate": 4.306987159568479e-05,
|
149 |
+
"loss": 0.9514,
|
150 |
+
"step": 190
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 2.5,
|
154 |
+
"grad_norm": 0.18989509344100952,
|
155 |
+
"learning_rate": 4.227656622467162e-05,
|
156 |
+
"loss": 0.9566,
|
157 |
+
"step": 200
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 2.5,
|
161 |
+
"eval_loss": 0.9630343914031982,
|
162 |
+
"eval_runtime": 353.288,
|
163 |
+
"eval_samples_per_second": 2.417,
|
164 |
+
"eval_steps_per_second": 0.606,
|
165 |
+
"step": 200
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 2.625,
|
169 |
+
"grad_norm": 0.19188831746578217,
|
170 |
+
"learning_rate": 4.144846814849282e-05,
|
171 |
+
"loss": 0.9655,
|
172 |
+
"step": 210
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 2.75,
|
176 |
+
"grad_norm": 0.2034657597541809,
|
177 |
+
"learning_rate": 4.058724504646834e-05,
|
178 |
+
"loss": 0.9537,
|
179 |
+
"step": 220
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 2.875,
|
183 |
+
"grad_norm": 0.20900140702724457,
|
184 |
+
"learning_rate": 3.969463130731183e-05,
|
185 |
+
"loss": 0.951,
|
186 |
+
"step": 230
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 3.0,
|
190 |
+
"grad_norm": 0.231728196144104,
|
191 |
+
"learning_rate": 3.8772424536302564e-05,
|
192 |
+
"loss": 0.938,
|
193 |
+
"step": 240
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 3.125,
|
197 |
+
"grad_norm": 0.21837086975574493,
|
198 |
+
"learning_rate": 3.782248193514766e-05,
|
199 |
+
"loss": 0.955,
|
200 |
+
"step": 250
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 3.25,
|
204 |
+
"grad_norm": 0.2057914286851883,
|
205 |
+
"learning_rate": 3.6846716561824965e-05,
|
206 |
+
"loss": 0.9319,
|
207 |
+
"step": 260
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 3.375,
|
211 |
+
"grad_norm": 0.22230790555477142,
|
212 |
+
"learning_rate": 3.5847093477938956e-05,
|
213 |
+
"loss": 0.9385,
|
214 |
+
"step": 270
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 3.5,
|
218 |
+
"grad_norm": 0.24387766420841217,
|
219 |
+
"learning_rate": 3.4825625791348096e-05,
|
220 |
+
"loss": 0.911,
|
221 |
+
"step": 280
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 3.625,
|
225 |
+
"grad_norm": 0.2634485065937042,
|
226 |
+
"learning_rate": 3.378437060203357e-05,
|
227 |
+
"loss": 0.9366,
|
228 |
+
"step": 290
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"epoch": 3.75,
|
232 |
+
"grad_norm": 0.22965680062770844,
|
233 |
+
"learning_rate": 3.272542485937369e-05,
|
234 |
+
"loss": 0.9082,
|
235 |
+
"step": 300
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"epoch": 3.75,
|
239 |
+
"eval_loss": 0.928753137588501,
|
240 |
+
"eval_runtime": 353.3512,
|
241 |
+
"eval_samples_per_second": 2.417,
|
242 |
+
"eval_steps_per_second": 0.606,
|
243 |
+
"step": 300
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 3.875,
|
247 |
+
"grad_norm": 0.21778391301631927,
|
248 |
+
"learning_rate": 3.165092113916688e-05,
|
249 |
+
"loss": 0.9158,
|
250 |
+
"step": 310
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"epoch": 4.0,
|
254 |
+
"grad_norm": 0.24541890621185303,
|
255 |
+
"learning_rate": 3.056302334890786e-05,
|
256 |
+
"loss": 0.9027,
|
257 |
+
"step": 320
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 4.125,
|
261 |
+
"grad_norm": 0.25015348196029663,
|
262 |
+
"learning_rate": 2.9463922369965917e-05,
|
263 |
+
"loss": 0.9336,
|
264 |
+
"step": 330
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 4.25,
|
268 |
+
"grad_norm": 0.22015893459320068,
|
269 |
+
"learning_rate": 2.8355831645441388e-05,
|
270 |
+
"loss": 0.9161,
|
271 |
+
"step": 340
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 4.375,
|
275 |
+
"grad_norm": 0.2516670823097229,
|
276 |
+
"learning_rate": 2.724098272258584e-05,
|
277 |
+
"loss": 0.8966,
|
278 |
+
"step": 350
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 4.5,
|
282 |
+
"grad_norm": 0.2541712820529938,
|
283 |
+
"learning_rate": 2.6121620758762877e-05,
|
284 |
+
"loss": 0.8954,
|
285 |
+
"step": 360
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 4.625,
|
289 |
+
"grad_norm": 0.25608915090560913,
|
290 |
+
"learning_rate": 2.5e-05,
|
291 |
+
"loss": 0.8815,
|
292 |
+
"step": 370
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 4.75,
|
296 |
+
"grad_norm": 0.24169643223285675,
|
297 |
+
"learning_rate": 2.3878379241237136e-05,
|
298 |
+
"loss": 0.89,
|
299 |
+
"step": 380
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 4.875,
|
303 |
+
"grad_norm": 0.2623349130153656,
|
304 |
+
"learning_rate": 2.2759017277414166e-05,
|
305 |
+
"loss": 0.9196,
|
306 |
+
"step": 390
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 5.0,
|
310 |
+
"grad_norm": 0.29517388343811035,
|
311 |
+
"learning_rate": 2.164416835455862e-05,
|
312 |
+
"loss": 0.8992,
|
313 |
+
"step": 400
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 5.0,
|
317 |
+
"eval_loss": 0.9107962846755981,
|
318 |
+
"eval_runtime": 353.3297,
|
319 |
+
"eval_samples_per_second": 2.417,
|
320 |
+
"eval_steps_per_second": 0.606,
|
321 |
+
"step": 400
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 5.125,
|
325 |
+
"grad_norm": 0.2589443027973175,
|
326 |
+
"learning_rate": 2.0536077630034086e-05,
|
327 |
+
"loss": 0.888,
|
328 |
+
"step": 410
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 5.25,
|
332 |
+
"grad_norm": 0.24191297590732574,
|
333 |
+
"learning_rate": 1.9436976651092144e-05,
|
334 |
+
"loss": 0.8901,
|
335 |
+
"step": 420
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 5.375,
|
339 |
+
"grad_norm": 0.27726104855537415,
|
340 |
+
"learning_rate": 1.8349078860833123e-05,
|
341 |
+
"loss": 0.9147,
|
342 |
+
"step": 430
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 5.5,
|
346 |
+
"grad_norm": 0.23908096551895142,
|
347 |
+
"learning_rate": 1.7274575140626318e-05,
|
348 |
+
"loss": 0.8925,
|
349 |
+
"step": 440
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 5.625,
|
353 |
+
"grad_norm": 0.30176234245300293,
|
354 |
+
"learning_rate": 1.621562939796643e-05,
|
355 |
+
"loss": 0.9012,
|
356 |
+
"step": 450
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 5.75,
|
360 |
+
"grad_norm": 0.23645330965518951,
|
361 |
+
"learning_rate": 1.5174374208651912e-05,
|
362 |
+
"loss": 0.8808,
|
363 |
+
"step": 460
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 5.875,
|
367 |
+
"grad_norm": 0.2720588147640228,
|
368 |
+
"learning_rate": 1.4152906522061048e-05,
|
369 |
+
"loss": 0.8816,
|
370 |
+
"step": 470
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"epoch": 6.0,
|
374 |
+
"grad_norm": 0.2631034553050995,
|
375 |
+
"learning_rate": 1.3153283438175034e-05,
|
376 |
+
"loss": 0.8941,
|
377 |
+
"step": 480
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 6.125,
|
381 |
+
"grad_norm": 0.2486189901828766,
|
382 |
+
"learning_rate": 1.217751806485235e-05,
|
383 |
+
"loss": 0.9048,
|
384 |
+
"step": 490
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 6.25,
|
388 |
+
"grad_norm": 0.2926970422267914,
|
389 |
+
"learning_rate": 1.122757546369744e-05,
|
390 |
+
"loss": 0.8874,
|
391 |
+
"step": 500
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 6.25,
|
395 |
+
"eval_loss": 0.9028034806251526,
|
396 |
+
"eval_runtime": 353.2345,
|
397 |
+
"eval_samples_per_second": 2.418,
|
398 |
+
"eval_steps_per_second": 0.606,
|
399 |
+
"step": 500
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 6.375,
|
403 |
+
"grad_norm": 0.25221139192581177,
|
404 |
+
"learning_rate": 1.0305368692688174e-05,
|
405 |
+
"loss": 0.8738,
|
406 |
+
"step": 510
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 6.5,
|
410 |
+
"grad_norm": 0.2523793578147888,
|
411 |
+
"learning_rate": 9.412754953531663e-06,
|
412 |
+
"loss": 0.8951,
|
413 |
+
"step": 520
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 6.625,
|
417 |
+
"grad_norm": 0.2493809163570404,
|
418 |
+
"learning_rate": 8.551531851507186e-06,
|
419 |
+
"loss": 0.8914,
|
420 |
+
"step": 530
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 6.75,
|
424 |
+
"grad_norm": 0.2688143253326416,
|
425 |
+
"learning_rate": 7.723433775328384e-06,
|
426 |
+
"loss": 0.8818,
|
427 |
+
"step": 540
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"epoch": 6.875,
|
431 |
+
"grad_norm": 0.2695543169975281,
|
432 |
+
"learning_rate": 6.930128404315214e-06,
|
433 |
+
"loss": 0.8794,
|
434 |
+
"step": 550
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 7.0,
|
438 |
+
"grad_norm": 0.27596864104270935,
|
439 |
+
"learning_rate": 6.173213349909729e-06,
|
440 |
+
"loss": 0.8814,
|
441 |
+
"step": 560
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 7.125,
|
445 |
+
"grad_norm": 0.27881208062171936,
|
446 |
+
"learning_rate": 5.454212938299255e-06,
|
447 |
+
"loss": 0.8909,
|
448 |
+
"step": 570
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"epoch": 7.25,
|
452 |
+
"grad_norm": 0.2895490825176239,
|
453 |
+
"learning_rate": 4.7745751406263165e-06,
|
454 |
+
"loss": 0.8737,
|
455 |
+
"step": 580
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 7.375,
|
459 |
+
"grad_norm": 0.25476014614105225,
|
460 |
+
"learning_rate": 4.135668656967434e-06,
|
461 |
+
"loss": 0.8937,
|
462 |
+
"step": 590
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"epoch": 7.5,
|
466 |
+
"grad_norm": 0.2785739600658417,
|
467 |
+
"learning_rate": 3.5387801599533475e-06,
|
468 |
+
"loss": 0.8835,
|
469 |
+
"step": 600
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 7.5,
|
473 |
+
"eval_loss": 0.899681031703949,
|
474 |
+
"eval_runtime": 353.2175,
|
475 |
+
"eval_samples_per_second": 2.418,
|
476 |
+
"eval_steps_per_second": 0.606,
|
477 |
+
"step": 600
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 7.625,
|
481 |
+
"grad_norm": 0.27525651454925537,
|
482 |
+
"learning_rate": 2.98511170358155e-06,
|
483 |
+
"loss": 0.8841,
|
484 |
+
"step": 610
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"epoch": 7.75,
|
488 |
+
"grad_norm": 0.25052082538604736,
|
489 |
+
"learning_rate": 2.475778302439524e-06,
|
490 |
+
"loss": 0.8979,
|
491 |
+
"step": 620
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 7.875,
|
495 |
+
"grad_norm": 0.2501230537891388,
|
496 |
+
"learning_rate": 2.0118056862137357e-06,
|
497 |
+
"loss": 0.8696,
|
498 |
+
"step": 630
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"epoch": 8.0,
|
502 |
+
"grad_norm": 0.2521611452102661,
|
503 |
+
"learning_rate": 1.59412823400657e-06,
|
504 |
+
"loss": 0.8782,
|
505 |
+
"step": 640
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 8.125,
|
509 |
+
"grad_norm": 0.249056875705719,
|
510 |
+
"learning_rate": 1.2235870926211619e-06,
|
511 |
+
"loss": 0.8873,
|
512 |
+
"step": 650
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 8.25,
|
516 |
+
"grad_norm": 0.27458131313323975,
|
517 |
+
"learning_rate": 9.009284826036691e-07,
|
518 |
+
"loss": 0.8737,
|
519 |
+
"step": 660
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 8.375,
|
523 |
+
"grad_norm": 0.24417945742607117,
|
524 |
+
"learning_rate": 6.268021954544096e-07,
|
525 |
+
"loss": 0.8883,
|
526 |
+
"step": 670
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"epoch": 8.5,
|
530 |
+
"grad_norm": 0.25331562757492065,
|
531 |
+
"learning_rate": 4.0176028503425835e-07,
|
532 |
+
"loss": 0.87,
|
533 |
+
"step": 680
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 8.625,
|
537 |
+
"grad_norm": 0.25556355714797974,
|
538 |
+
"learning_rate": 2.262559558016325e-07,
|
539 |
+
"loss": 0.8746,
|
540 |
+
"step": 690
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"epoch": 8.75,
|
544 |
+
"grad_norm": 0.27511876821517944,
|
545 |
+
"learning_rate": 1.006426501190233e-07,
|
546 |
+
"loss": 0.8912,
|
547 |
+
"step": 700
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"epoch": 8.75,
|
551 |
+
"eval_loss": 0.8991448283195496,
|
552 |
+
"eval_runtime": 353.267,
|
553 |
+
"eval_samples_per_second": 2.417,
|
554 |
+
"eval_steps_per_second": 0.606,
|
555 |
+
"step": 700
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 8.875,
|
559 |
+
"grad_norm": 0.2639774680137634,
|
560 |
+
"learning_rate": 2.5173336467135267e-08,
|
561 |
+
"loss": 0.9007,
|
562 |
+
"step": 710
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 9.0,
|
566 |
+
"grad_norm": 0.27557557821273804,
|
567 |
+
"learning_rate": 0.0,
|
568 |
+
"loss": 0.8796,
|
569 |
+
"step": 720
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 9.0,
|
573 |
+
"step": 720,
|
574 |
+
"total_flos": 2.5580424283828716e+18,
|
575 |
+
"train_loss": 0.9693152533637153,
|
576 |
+
"train_runtime": 60193.9387,
|
577 |
+
"train_samples_per_second": 1.148,
|
578 |
+
"train_steps_per_second": 0.012
|
579 |
+
}
|
580 |
+
],
|
581 |
+
"logging_steps": 10,
|
582 |
+
"max_steps": 720,
|
583 |
+
"num_input_tokens_seen": 0,
|
584 |
+
"num_train_epochs": 9,
|
585 |
+
"save_steps": 100,
|
586 |
+
"total_flos": 2.5580424283828716e+18,
|
587 |
+
"train_batch_size": 12,
|
588 |
+
"trial_name": null,
|
589 |
+
"trial_params": null
|
590 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5badf6ea1b208056e83e64d2e96f6325b3d65de256294dc09063561959f7369
|
3 |
+
size 5176
|
training_eval_loss.png
ADDED
![]() |
training_loss.png
ADDED
![]() |