ADCC commited on
Commit
97b829f
·
1 Parent(s): 8d5241f

Published my first trained RL model.

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 277.05 +/- 18.88
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f493a8ee040>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f493a8ee0d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f493a8ee160>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f493a8ee1f0>", "_build": "<function ActorCriticPolicy._build at 0x7f493a8ee280>", "forward": "<function ActorCriticPolicy.forward at 0x7f493a8ee310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f493a8ee3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f493a8ee430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f493a8ee4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f493a8ee550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f493a8ee5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f493a8ea480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673281851950508815, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqDvD249uW5Z8Gos/BrBTAOfas6JUG7MwAAgD8AAIA/gP3xPfGGXD72wu2+u32OvtiRUr4hnMa9AAAAAAAAAABT6RC+RRmLPqshbD5dvJG+bvVku4VjnT0AAAAAAAAAACD2Br5vJ3c/EExHvq0MB79mE3C+5ZLDvQAAAAAAAAAAMxNuO6ORtj8w9TY+Z6KoPoReJruulwO8AAAAAAAAAADt/kQ+O6KtvJx1Dz6ebIi83sgVvgKqVr0AAIA/AACAP83z9DxPZ4w/f1cTPh5IEb80eFU9mLUqvQAAAAAAAAAAkGBnvnYErD/6RAa/vXUBvyRRub5zugi+AAAAAAAAAACAfwQ9SNnbOWSRLbN8cVywDzDLO9aAzzMAAIA/AACAP2ZTjD2ohrk/VlUIP4uMdrs3D847ImUmPgAAAAAAAAAAAAm3PAgVsz1D8lg+v6iMvokNqT0G6Bw8AAAAAAAAAADNxpw8xPVaPu/Yor0jiou+PohOvbFmDz0AAAAAAAAAAG3IPr6O55Y/XVpnvrSPGb84YoS+r5uWvQAAAAAAAAAAzbrsPI11XT62SNo9pzGVvtCvWT122OG8AAAAAAAAAAAgShm+sIwTP/LLu7tbSL2+Q/0yvoIxIT0AAAAAAAAAAIBsbj1csyi6d1OJugpzALb6FMU6ZlqfOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPZzAdJrIcUCUhpRSlIwBbJRL1IwBdJRHQJeihRUFSsN1fZQoaAZoCWgPQwiEhChfUCN0QJSGlFKUaBVNHgFoFkdAl6KUNz8xbnV9lChoBmgJaA9DCAMkmkDRoHBAlIaUUpRoFUvyaBZHQJeiqVmjCYV1fZQoaAZoCWgPQwhjnL8JhS1zQJSGlFKUaBVNIAFoFkdAl6QBoM8YAXV9lChoBmgJaA9DCM+9h0tO73JAlIaUUpRoFU02AWgWR0CXpAGR3eN2dX2UKGgGaAloD0MIvmn67ADucUCUhpRSlGgVTTQBaBZHQJekKvStvGZ1fZQoaAZoCWgPQwgsYW2MnbpxQJSGlFKUaBVL0GgWR0CXpM8eCCjDdX2UKGgGaAloD0MIfQT+8DNRc0CUhpRSlGgVS/ZoFkdAl6TO7cwg1XV9lChoBmgJaA9DCHP3OT5apnBAlIaUUpRoFUvVaBZHQJelWp97Wup1fZQoaAZoCWgPQwj9pNqn48VwQJSGlFKUaBVNKAFoFkdAl6VpeAuqWHV9lChoBmgJaA9DCIBkOnS6R3JAlIaUUpRoFU0VAWgWR0CXpaHMEA5rdX2UKGgGaAloD0MIHhmrzf9+bUCUhpRSlGgVS99oFkdAl6Xa99MK1HV9lChoBmgJaA9DCK5i8ZvCE25AlIaUUpRoFUv2aBZHQJem7J8v25B1fZQoaAZoCWgPQwgVxaus7R1zQJSGlFKUaBVL6GgWR0CXpxitq59WdX2UKGgGaAloD0MIozodyLpccECUhpRSlGgVTTIBaBZHQJenL6UJOWV1fZQoaAZoCWgPQwiUUPpCiKhxQJSGlFKUaBVL9WgWR0CXp5eXzDoAdX2UKGgGaAloD0MI2v6VlWY7ckCUhpRSlGgVS+1oFkdAl6h0ona37XV9lChoBmgJaA9DCGwFTUsszHFAlIaUUpRoFU0CAWgWR0CXqRWcBltkdX2UKGgGaAloD0MIM/59xgVPc0CUhpRSlGgVTQ4BaBZHQJepR+DvmYB1fZQoaAZoCWgPQwi6pGq7iVpyQJSGlFKUaBVL+WgWR0CXqi1cdHUddX2UKGgGaAloD0MIR3cQO5PXcUCUhpRSlGgVS/doFkdAl6sILkS26XV9lChoBmgJaA9DCMCXwoNmKXJAlIaUUpRoFU0DAWgWR0CXq2hb4agmdX2UKGgGaAloD0MIxvtx+2XocECUhpRSlGgVTSsBaBZHQJer5JJ5E+h1fZQoaAZoCWgPQwj4bvPGyRZyQJSGlFKUaBVL8mgWR0CXq+4mCyyEdX2UKGgGaAloD0MIjxt+N138cUCUhpRSlGgVS/5oFkdAl6vvhybQTnV9lChoBmgJaA9DCIJ0sWklM29AlIaUUpRoFU0FAWgWR0CXrCrE9+w1dX2UKGgGaAloD0MIp5Nsdbl/b0CUhpRSlGgVS/toFkdAl6xoLXtjTnV9lChoBmgJaA9DCOSiWkQUPW9AlIaUUpRoFUvsaBZHQJetbn/1g6V1fZQoaAZoCWgPQwg3wqIiTtduQJSGlFKUaBVL62gWR0CXreab4Ju3dX2UKGgGaAloD0MIVFbT9QTrckCUhpRSlGgVTRIBaBZHQJeuHYI0IkZ1fZQoaAZoCWgPQwgKhJ1iVRNxQJSGlFKUaBVL3mgWR0CXrnU0vXbudX2UKGgGaAloD0MIbqKW5taJckCUhpRSlGgVS/VoFkdAl6+3d43WF3V9lChoBmgJaA9DCF+VC5V/znJAlIaUUpRoFU1TAWgWR0CX32eAd4mkdX2UKGgGaAloD0MIVDVB1L3KckCUhpRSlGgVS/poFkdAl+BtbxEv03V9lChoBmgJaA9DCNmUK7yLGXNAlIaUUpRoFUvfaBZHQJfgdX3g1m91fZQoaAZoCWgPQwhngXaHVD5yQJSGlFKUaBVL6GgWR0CX4RJsO5J9dX2UKGgGaAloD0MIuYybGijmckCUhpRSlGgVTTcBaBZHQJfhPxnWatt1fZQoaAZoCWgPQwj1nzU//lpyQJSGlFKUaBVL5WgWR0CX4YE1EVnFdX2UKGgGaAloD0MI7YDrihm8bUCUhpRSlGgVS+xoFkdAl+Gvhhpg1HV9lChoBmgJaA9DCLnCu1wEQHBAlIaUUpRoFUv5aBZHQJfiDcO9WZJ1fZQoaAZoCWgPQwhgj4mUphpyQJSGlFKUaBVNCAFoFkdAl+Kov38GcHV9lChoBmgJaA9DCLTKTGn9FHBAlIaUUpRoFUvqaBZHQJfjLd+G47R1fZQoaAZoCWgPQwhnmUUo9utyQJSGlFKUaBVNGwFoFkdAl+NlAJLM93V9lChoBmgJaA9DCOlHwynzVmtAlIaUUpRoFU1mAmgWR0CX45XEqDsddX2UKGgGaAloD0MIV+2akFb0bUCUhpRSlGgVS+toFkdAl+Ova+N96XV9lChoBmgJaA9DCKuvrgpUgHJAlIaUUpRoFUv2aBZHQJfkJlTWGyp1fZQoaAZoCWgPQwjJx+4CZXNxQJSGlFKUaBVL32gWR0CX5RQZXMhYdX2UKGgGaAloD0MI1qvI6ABwc0CUhpRSlGgVTREBaBZHQJflKc+aBqd1fZQoaAZoCWgPQwi6MNKL2sJxQJSGlFKUaBVL9GgWR0CX5ttapxWDdX2UKGgGaAloD0MIAYdQpWZBc0CUhpRSlGgVS/NoFkdAl+bbzK9wm3V9lChoBmgJaA9DCH7IW67+rnJAlIaUUpRoFU0WAWgWR0CX5tdQO4G2dX2UKGgGaAloD0MI+ir52F1sbUCUhpRSlGgVS+FoFkdAl+cSx3V093V9lChoBmgJaA9DCLiP3Jp0C3BAlIaUUpRoFUvfaBZHQJfnZsImgJ11fZQoaAZoCWgPQwiYTYBheTFyQJSGlFKUaBVNAAFoFkdAl+e40dilSHV9lChoBmgJaA9DCMe5TbhX1XJAlIaUUpRoFUvqaBZHQJfoAhNdqtZ1fZQoaAZoCWgPQwjU8ZiBSrFxQJSGlFKUaBVNBgFoFkdAl+g2OhkAgnV9lChoBmgJaA9DCCuE1VjCKXBAlIaUUpRoFUvbaBZHQJfoPvw3HaN1fZQoaAZoCWgPQwh0t+ulqRVyQJSGlFKUaBVL8mgWR0CX6UkbxVhkdX2UKGgGaAloD0MIOzYC8fqpcECUhpRSlGgVS+VoFkdAl+lZCWu5jHV9lChoBmgJaA9DCJEMObYeAW1AlIaUUpRoFUvyaBZHQJfpfvF3pwF1fZQoaAZoCWgPQwj6muWy0eJyQJSGlFKUaBVL6GgWR0CX6YUZeiSJdX2UKGgGaAloD0MINWCQ9GlEcUCUhpRSlGgVS/NoFkdAl+svAsTWXnV9lChoBmgJaA9DCK+0jNR7uE5AlIaUUpRoFUuxaBZHQJfrOGetjkN1fZQoaAZoCWgPQwjku5S65KpyQJSGlFKUaBVNJAFoFkdAl+t4DPnjhnV9lChoBmgJaA9DCN0jm6smtXFAlIaUUpRoFUvQaBZHQJfr7XHzYmN1fZQoaAZoCWgPQwjvVMA9z+dzQJSGlFKUaBVL6WgWR0CX7I3CKrJbdX2UKGgGaAloD0MIb7vQXKdQb0CUhpRSlGgVS+xoFkdAl+0tEgGKRHV9lChoBmgJaA9DCFJEhlU8YW9AlIaUUpRoFUvSaBZHQJftXQyAQQN1fZQoaAZoCWgPQwhjtmRVhDZxQJSGlFKUaBVL3GgWR0CX7Wlj3EhrdX2UKGgGaAloD0MIiGh0BzFWcUCUhpRSlGgVTQoBaBZHQJftmrELpiZ1fZQoaAZoCWgPQwjd0f9yrTptQJSGlFKUaBVNcAFoFkdAl+5gi3XqaHV9lChoBmgJaA9DCIALsmX5EG9AlIaUUpRoFUv/aBZHQJfuiOXE61d1fZQoaAZoCWgPQwj5hVeS/DVxQJSGlFKUaBVL4mgWR0CX7uJHy3CsdX2UKGgGaAloD0MI4sluZvTBcECUhpRSlGgVTQkBaBZHQJfwA0Jng511fZQoaAZoCWgPQwhoWfePRVhyQJSGlFKUaBVNAQFoFkdAl+//ReC04XV9lChoBmgJaA9DCIGzlCxn3HBAlIaUUpRoFU0NAWgWR0CX8Erjo6jndX2UKGgGaAloD0MITDj0Fo9kbkCUhpRSlGgVTWoBaBZHQJfwymKqGUR1fZQoaAZoCWgPQwgfZ5qwfU1vQJSGlFKUaBVNBAFoFkdAl/HDaTOgQHV9lChoBmgJaA9DCEJ8YMf/T3BAlIaUUpRoFUv9aBZHQJfx3zasZHd1fZQoaAZoCWgPQwgk1uJTACZzQJSGlFKUaBVL9mgWR0CX8jCxNZeSdX2UKGgGaAloD0MIPdS2YZQcc0CUhpRSlGgVTRoBaBZHQJfyVFw1ivx1fZQoaAZoCWgPQwg6WWq93/JFQJSGlFKUaBVLvmgWR0CX8nH3lCC0dX2UKGgGaAloD0MIrcCQ1a3uQUCUhpRSlGgVS6toFkdAl/LRzFMqSXV9lChoBmgJaA9DCMYzaOhfOXJAlIaUUpRoFUv8aBZHQJfy5wn6VMV1fZQoaAZoCWgPQwgJpwUv+gxOQJSGlFKUaBVLtWgWR0CX81wIMSbpdX2UKGgGaAloD0MIQIaOHVRpcECUhpRSlGgVS/poFkdAl/NpjhDPW3V9lChoBmgJaA9DCKBTkJ+Nr3FAlIaUUpRoFUv/aBZHQJfzsyLyc1B1fZQoaAZoCWgPQwgJbTmX4otwQJSGlFKUaBVL/GgWR0CX860Cih38dX2UKGgGaAloD0MISnuDLwxWcECUhpRSlGgVS/xoFkdAl/R1AZ88cXV9lChoBmgJaA9DCBfTTPe6PG9AlIaUUpRoFUvlaBZHQJf1oHVwxWV1fZQoaAZoCWgPQwjGMZI9QllvQJSGlFKUaBVL9mgWR0CX9c3QUpNLdX2UKGgGaAloD0MIG76FdWNuckCUhpRSlGgVS/5oFkdAl/X+eSSvDHV9lChoBmgJaA9DCG8PQkB+QnBAlIaUUpRoFUvhaBZHQJf2EaQ3gk11fZQoaAZoCWgPQwgix9YzxGxzQJSGlFKUaBVL0WgWR0CX9w+PBBRidX2UKGgGaAloD0MIpwcFpSgcc0CUhpRSlGgVS91oFkdAl/ezZL7GenV9lChoBmgJaA9DCB+BP/w88XJAlIaUUpRoFU0GAWgWR0CX+A0o0ALidX2UKGgGaAloD0MIV3xD4fOrcECUhpRSlGgVTQQBaBZHQJf4GshgVoJ1fZQoaAZoCWgPQwhO8bioVq1xQJSGlFKUaBVNAAFoFkdAl/h8ir1dxHV9lChoBmgJaA9DCHNlUG3wGG1AlIaUUpRoFUveaBZHQJf4x4B3iaR1fZQoaAZoCWgPQwjRksfTcs5tQJSGlFKUaBVL2mgWR0CX+QWiUPhAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c846d257743116624152639e5507e0739b5fdb38df8398107c4fe38202069eb5
3
+ size 147131
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f493a8ee040>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f493a8ee0d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f493a8ee160>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f493a8ee1f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f493a8ee280>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f493a8ee310>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f493a8ee3a0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f493a8ee430>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f493a8ee4c0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f493a8ee550>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f493a8ee5e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f493a8ea480>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1673281851950508815,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqDvD249uW5Z8Gos/BrBTAOfas6JUG7MwAAgD8AAIA/gP3xPfGGXD72wu2+u32OvtiRUr4hnMa9AAAAAAAAAABT6RC+RRmLPqshbD5dvJG+bvVku4VjnT0AAAAAAAAAACD2Br5vJ3c/EExHvq0MB79mE3C+5ZLDvQAAAAAAAAAAMxNuO6ORtj8w9TY+Z6KoPoReJruulwO8AAAAAAAAAADt/kQ+O6KtvJx1Dz6ebIi83sgVvgKqVr0AAIA/AACAP83z9DxPZ4w/f1cTPh5IEb80eFU9mLUqvQAAAAAAAAAAkGBnvnYErD/6RAa/vXUBvyRRub5zugi+AAAAAAAAAACAfwQ9SNnbOWSRLbN8cVywDzDLO9aAzzMAAIA/AACAP2ZTjD2ohrk/VlUIP4uMdrs3D847ImUmPgAAAAAAAAAAAAm3PAgVsz1D8lg+v6iMvokNqT0G6Bw8AAAAAAAAAADNxpw8xPVaPu/Yor0jiou+PohOvbFmDz0AAAAAAAAAAG3IPr6O55Y/XVpnvrSPGb84YoS+r5uWvQAAAAAAAAAAzbrsPI11XT62SNo9pzGVvtCvWT122OG8AAAAAAAAAAAgShm+sIwTP/LLu7tbSL2+Q/0yvoIxIT0AAAAAAAAAAIBsbj1csyi6d1OJugpzALb6FMU6ZlqfOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIPZzAdJrIcUCUhpRSlIwBbJRL1IwBdJRHQJeihRUFSsN1fZQoaAZoCWgPQwiEhChfUCN0QJSGlFKUaBVNHgFoFkdAl6KUNz8xbnV9lChoBmgJaA9DCAMkmkDRoHBAlIaUUpRoFUvyaBZHQJeiqVmjCYV1fZQoaAZoCWgPQwhjnL8JhS1zQJSGlFKUaBVNIAFoFkdAl6QBoM8YAXV9lChoBmgJaA9DCM+9h0tO73JAlIaUUpRoFU02AWgWR0CXpAGR3eN2dX2UKGgGaAloD0MIvmn67ADucUCUhpRSlGgVTTQBaBZHQJekKvStvGZ1fZQoaAZoCWgPQwgsYW2MnbpxQJSGlFKUaBVL0GgWR0CXpM8eCCjDdX2UKGgGaAloD0MIfQT+8DNRc0CUhpRSlGgVS/ZoFkdAl6TO7cwg1XV9lChoBmgJaA9DCHP3OT5apnBAlIaUUpRoFUvVaBZHQJelWp97Wup1fZQoaAZoCWgPQwj9pNqn48VwQJSGlFKUaBVNKAFoFkdAl6VpeAuqWHV9lChoBmgJaA9DCIBkOnS6R3JAlIaUUpRoFU0VAWgWR0CXpaHMEA5rdX2UKGgGaAloD0MIHhmrzf9+bUCUhpRSlGgVS99oFkdAl6Xa99MK1HV9lChoBmgJaA9DCK5i8ZvCE25AlIaUUpRoFUv2aBZHQJem7J8v25B1fZQoaAZoCWgPQwgVxaus7R1zQJSGlFKUaBVL6GgWR0CXpxitq59WdX2UKGgGaAloD0MIozodyLpccECUhpRSlGgVTTIBaBZHQJenL6UJOWV1fZQoaAZoCWgPQwiUUPpCiKhxQJSGlFKUaBVL9WgWR0CXp5eXzDoAdX2UKGgGaAloD0MI2v6VlWY7ckCUhpRSlGgVS+1oFkdAl6h0ona37XV9lChoBmgJaA9DCGwFTUsszHFAlIaUUpRoFU0CAWgWR0CXqRWcBltkdX2UKGgGaAloD0MIM/59xgVPc0CUhpRSlGgVTQ4BaBZHQJepR+DvmYB1fZQoaAZoCWgPQwi6pGq7iVpyQJSGlFKUaBVL+WgWR0CXqi1cdHUddX2UKGgGaAloD0MIR3cQO5PXcUCUhpRSlGgVS/doFkdAl6sILkS26XV9lChoBmgJaA9DCMCXwoNmKXJAlIaUUpRoFU0DAWgWR0CXq2hb4agmdX2UKGgGaAloD0MIxvtx+2XocECUhpRSlGgVTSsBaBZHQJer5JJ5E+h1fZQoaAZoCWgPQwj4bvPGyRZyQJSGlFKUaBVL8mgWR0CXq+4mCyyEdX2UKGgGaAloD0MIjxt+N138cUCUhpRSlGgVS/5oFkdAl6vvhybQTnV9lChoBmgJaA9DCIJ0sWklM29AlIaUUpRoFU0FAWgWR0CXrCrE9+w1dX2UKGgGaAloD0MIp5Nsdbl/b0CUhpRSlGgVS/toFkdAl6xoLXtjTnV9lChoBmgJaA9DCOSiWkQUPW9AlIaUUpRoFUvsaBZHQJetbn/1g6V1fZQoaAZoCWgPQwg3wqIiTtduQJSGlFKUaBVL62gWR0CXreab4Ju3dX2UKGgGaAloD0MIVFbT9QTrckCUhpRSlGgVTRIBaBZHQJeuHYI0IkZ1fZQoaAZoCWgPQwgKhJ1iVRNxQJSGlFKUaBVL3mgWR0CXrnU0vXbudX2UKGgGaAloD0MIbqKW5taJckCUhpRSlGgVS/VoFkdAl6+3d43WF3V9lChoBmgJaA9DCF+VC5V/znJAlIaUUpRoFU1TAWgWR0CX32eAd4mkdX2UKGgGaAloD0MIVDVB1L3KckCUhpRSlGgVS/poFkdAl+BtbxEv03V9lChoBmgJaA9DCNmUK7yLGXNAlIaUUpRoFUvfaBZHQJfgdX3g1m91fZQoaAZoCWgPQwhngXaHVD5yQJSGlFKUaBVL6GgWR0CX4RJsO5J9dX2UKGgGaAloD0MIuYybGijmckCUhpRSlGgVTTcBaBZHQJfhPxnWatt1fZQoaAZoCWgPQwj1nzU//lpyQJSGlFKUaBVL5WgWR0CX4YE1EVnFdX2UKGgGaAloD0MI7YDrihm8bUCUhpRSlGgVS+xoFkdAl+Gvhhpg1HV9lChoBmgJaA9DCLnCu1wEQHBAlIaUUpRoFUv5aBZHQJfiDcO9WZJ1fZQoaAZoCWgPQwhgj4mUphpyQJSGlFKUaBVNCAFoFkdAl+Kov38GcHV9lChoBmgJaA9DCLTKTGn9FHBAlIaUUpRoFUvqaBZHQJfjLd+G47R1fZQoaAZoCWgPQwhnmUUo9utyQJSGlFKUaBVNGwFoFkdAl+NlAJLM93V9lChoBmgJaA9DCOlHwynzVmtAlIaUUpRoFU1mAmgWR0CX45XEqDsddX2UKGgGaAloD0MIV+2akFb0bUCUhpRSlGgVS+toFkdAl+Ova+N96XV9lChoBmgJaA9DCKuvrgpUgHJAlIaUUpRoFUv2aBZHQJfkJlTWGyp1fZQoaAZoCWgPQwjJx+4CZXNxQJSGlFKUaBVL32gWR0CX5RQZXMhYdX2UKGgGaAloD0MI1qvI6ABwc0CUhpRSlGgVTREBaBZHQJflKc+aBqd1fZQoaAZoCWgPQwi6MNKL2sJxQJSGlFKUaBVL9GgWR0CX5ttapxWDdX2UKGgGaAloD0MIAYdQpWZBc0CUhpRSlGgVS/NoFkdAl+bbzK9wm3V9lChoBmgJaA9DCH7IW67+rnJAlIaUUpRoFU0WAWgWR0CX5tdQO4G2dX2UKGgGaAloD0MI+ir52F1sbUCUhpRSlGgVS+FoFkdAl+cSx3V093V9lChoBmgJaA9DCLiP3Jp0C3BAlIaUUpRoFUvfaBZHQJfnZsImgJ11fZQoaAZoCWgPQwiYTYBheTFyQJSGlFKUaBVNAAFoFkdAl+e40dilSHV9lChoBmgJaA9DCMe5TbhX1XJAlIaUUpRoFUvqaBZHQJfoAhNdqtZ1fZQoaAZoCWgPQwjU8ZiBSrFxQJSGlFKUaBVNBgFoFkdAl+g2OhkAgnV9lChoBmgJaA9DCCuE1VjCKXBAlIaUUpRoFUvbaBZHQJfoPvw3HaN1fZQoaAZoCWgPQwh0t+ulqRVyQJSGlFKUaBVL8mgWR0CX6UkbxVhkdX2UKGgGaAloD0MIOzYC8fqpcECUhpRSlGgVS+VoFkdAl+lZCWu5jHV9lChoBmgJaA9DCJEMObYeAW1AlIaUUpRoFUvyaBZHQJfpfvF3pwF1fZQoaAZoCWgPQwj6muWy0eJyQJSGlFKUaBVL6GgWR0CX6YUZeiSJdX2UKGgGaAloD0MINWCQ9GlEcUCUhpRSlGgVS/NoFkdAl+svAsTWXnV9lChoBmgJaA9DCK+0jNR7uE5AlIaUUpRoFUuxaBZHQJfrOGetjkN1fZQoaAZoCWgPQwjku5S65KpyQJSGlFKUaBVNJAFoFkdAl+t4DPnjhnV9lChoBmgJaA9DCN0jm6smtXFAlIaUUpRoFUvQaBZHQJfr7XHzYmN1fZQoaAZoCWgPQwjvVMA9z+dzQJSGlFKUaBVL6WgWR0CX7I3CKrJbdX2UKGgGaAloD0MIb7vQXKdQb0CUhpRSlGgVS+xoFkdAl+0tEgGKRHV9lChoBmgJaA9DCFJEhlU8YW9AlIaUUpRoFUvSaBZHQJftXQyAQQN1fZQoaAZoCWgPQwhjtmRVhDZxQJSGlFKUaBVL3GgWR0CX7Wlj3EhrdX2UKGgGaAloD0MIiGh0BzFWcUCUhpRSlGgVTQoBaBZHQJftmrELpiZ1fZQoaAZoCWgPQwjd0f9yrTptQJSGlFKUaBVNcAFoFkdAl+5gi3XqaHV9lChoBmgJaA9DCIALsmX5EG9AlIaUUpRoFUv/aBZHQJfuiOXE61d1fZQoaAZoCWgPQwj5hVeS/DVxQJSGlFKUaBVL4mgWR0CX7uJHy3CsdX2UKGgGaAloD0MI4sluZvTBcECUhpRSlGgVTQkBaBZHQJfwA0Jng511fZQoaAZoCWgPQwhoWfePRVhyQJSGlFKUaBVNAQFoFkdAl+//ReC04XV9lChoBmgJaA9DCIGzlCxn3HBAlIaUUpRoFU0NAWgWR0CX8Erjo6jndX2UKGgGaAloD0MITDj0Fo9kbkCUhpRSlGgVTWoBaBZHQJfwymKqGUR1fZQoaAZoCWgPQwgfZ5qwfU1vQJSGlFKUaBVNBAFoFkdAl/HDaTOgQHV9lChoBmgJaA9DCEJ8YMf/T3BAlIaUUpRoFUv9aBZHQJfx3zasZHd1fZQoaAZoCWgPQwgk1uJTACZzQJSGlFKUaBVL9mgWR0CX8jCxNZeSdX2UKGgGaAloD0MIPdS2YZQcc0CUhpRSlGgVTRoBaBZHQJfyVFw1ivx1fZQoaAZoCWgPQwg6WWq93/JFQJSGlFKUaBVLvmgWR0CX8nH3lCC0dX2UKGgGaAloD0MIrcCQ1a3uQUCUhpRSlGgVS6toFkdAl/LRzFMqSXV9lChoBmgJaA9DCMYzaOhfOXJAlIaUUpRoFUv8aBZHQJfy5wn6VMV1fZQoaAZoCWgPQwgJpwUv+gxOQJSGlFKUaBVLtWgWR0CX81wIMSbpdX2UKGgGaAloD0MIQIaOHVRpcECUhpRSlGgVS/poFkdAl/NpjhDPW3V9lChoBmgJaA9DCKBTkJ+Nr3FAlIaUUpRoFUv/aBZHQJfzsyLyc1B1fZQoaAZoCWgPQwgJbTmX4otwQJSGlFKUaBVL/GgWR0CX860Cih38dX2UKGgGaAloD0MISnuDLwxWcECUhpRSlGgVS/xoFkdAl/R1AZ88cXV9lChoBmgJaA9DCBfTTPe6PG9AlIaUUpRoFUvlaBZHQJf1oHVwxWV1fZQoaAZoCWgPQwjGMZI9QllvQJSGlFKUaBVL9mgWR0CX9c3QUpNLdX2UKGgGaAloD0MIG76FdWNuckCUhpRSlGgVS/5oFkdAl/X+eSSvDHV9lChoBmgJaA9DCG8PQkB+QnBAlIaUUpRoFUvhaBZHQJf2EaQ3gk11fZQoaAZoCWgPQwgix9YzxGxzQJSGlFKUaBVL0WgWR0CX9w+PBBRidX2UKGgGaAloD0MIpwcFpSgcc0CUhpRSlGgVS91oFkdAl/ezZL7GenV9lChoBmgJaA9DCB+BP/w88XJAlIaUUpRoFU0GAWgWR0CX+A0o0ALidX2UKGgGaAloD0MIV3xD4fOrcECUhpRSlGgVTQQBaBZHQJf4GshgVoJ1fZQoaAZoCWgPQwhO8bioVq1xQJSGlFKUaBVNAAFoFkdAl/h8ir1dxHV9lChoBmgJaA9DCHNlUG3wGG1AlIaUUpRoFUveaBZHQJf4x4B3iaR1fZQoaAZoCWgPQwjRksfTcs5tQJSGlFKUaBVL2mgWR0CX+QWiUPhAdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 620,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bf028dcbbbb32feac9ea8ff0e57888d4af5434edef134bc6f71eeb028cd257c
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee98809be94b6d6bcd91877602774ad064d5306aee547fef051cb25429905ec4
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (228 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 277.05319951770855, "std_reward": 18.882224590018374, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-09T17:44:31.832403"}