Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
language:
|
5 |
+
- th
|
6 |
+
pipeline_tag: image-to-text
|
7 |
+
base_model: Salesforce/blip2-opt-2.7b-coco
|
8 |
+
---
|
9 |
+
|
10 |
+
## THAI-BLIP-2
|
11 |
+
fine-tuned for image captioning task from [blip2-opt-2.7b-coco](Salesforce/blip2-opt-2.7b-coco) with MSCOCO2017 thai caption.
|
12 |
+
|
13 |
+
## How to use:
|
14 |
+
```python
|
15 |
+
from transformers import Blip2ForConditionalGeneration, Blip2Processor
|
16 |
+
from PIL import Image
|
17 |
+
import torch
|
18 |
+
|
19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
|
21 |
+
processor = Blip2Processor.from_pretrained("kxm1k4m1/icu-mama-cooking")
|
22 |
+
model = Blip2ForConditionalGeneration.from_pretrained("kxm1k4m1/icu-mama-cooking", device_map=device, torch_dtype=torch.bfloat16)
|
23 |
+
|
24 |
+
img = Image.open("Your image...")
|
25 |
+
inputs = processor(images=img, return_tensors="pt").to(device, torch.bfloat16)
|
26 |
+
|
27 |
+
# Adjust your `max_length`
|
28 |
+
generated_ids = model.generate(**inputs, max_length=20)
|
29 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
30 |
+
print(generated_text)
|
31 |
+
```
|