kuro-08 commited on
Commit
9fed73a
·
verified ·
1 Parent(s): 366b192

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -1
README.md CHANGED
@@ -7,4 +7,71 @@ metrics:
7
  base_model:
8
  - google-bert/bert-base-uncased
9
  pipeline_tag: text-classification
10
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  base_model:
8
  - google-bert/bert-base-uncased
9
  pipeline_tag: text-classification
10
+ ---
11
+
12
+ # Fine-Tuned BERT for Transaction Categorization
13
+
14
+ This is a fine-tuned [BERT model](https://huggingface.co/transformers/model_doc/bert.html) specifically trained to categorize financial transactions into predefined categories. The model was trained on a dataset of English transaction descriptions to classify them into categories like "Groceries," "Transport," "Entertainment," and more.
15
+
16
+ ## Model Details
17
+
18
+ - **Base Model**: [bert-base-uncased](https://huggingface.co/bert-base-uncased).
19
+ - **Fine-Tuning Task**: Transaction Categorization (multi-class classification).
20
+ - **Languages**: English.
21
+
22
+ ### Example Categories
23
+ The model classifies transactions into categories such as:
24
+ ```python
25
+ CATEGORIES = {
26
+
27
+ 0: "Utilities",
28
+ 1: "Health",
29
+ 2: "Dining",
30
+ 3: "Travel",
31
+ 4: "Education",
32
+ 5: "Subscription",
33
+ 6: "Family",
34
+ 7: "Food",
35
+ 8: "Festivals",
36
+ 9: "Culture",
37
+ 10: "Apparel",
38
+ 11: "Transportation",
39
+ 12: "Investment",
40
+ 13: "Shopping",
41
+ 14: "Groceries",
42
+ 15: "Documents",
43
+ 16: "Grooming",
44
+ 17: "Entertainment",
45
+ 18: "Social Life",
46
+ 19: "Beauty",
47
+ 20: "Rent",
48
+ 21: "Money transfer",
49
+ 22: "Salary",
50
+ 23: "Tourism",
51
+ 24: "Household",
52
+ }
53
+ ```
54
+ ---
55
+
56
+ ## How to Use the Model
57
+
58
+ To use this model, you can load it directly with Hugging Face's `transformers` library:
59
+
60
+ ```python
61
+ from transformers import BertTokenizer, BertForSequenceClassification
62
+
63
+ # Load the model
64
+ model_name = "kuro-08/bert-transaction-categorization"
65
+ tokenizer = BertTokenizer.from_pretrained(model_name)
66
+ model = BertForSequenceClassification.from_pretrained(model_name)
67
+
68
+ # Sample transaction description
69
+ transaction = "Transaction: Payment at Starbucks for coffee - Type: income/expense"
70
+ inputs = tokenizer(transaction, return_tensors="pt", truncation=True, padding=True)
71
+
72
+ # Predict the category
73
+ outputs = model(**inputs)
74
+ logits = outputs.logits
75
+ predicted_category = logits.argmax(-1).item()
76
+
77
+ print(f"Predicted category: {predicted_category}")