Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- text-generation
|
| 5 |
+
- kimi_k2
|
| 6 |
+
- muon
|
| 7 |
+
datasets:
|
| 8 |
+
- loggenix-rca
|
| 9 |
+
language:
|
| 10 |
+
- en
|
| 11 |
+
pipeline_tag: text-generation
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# loggenix-nanoKimi2-test
|
| 15 |
+
|
| 16 |
+
This model was trained using the following configuration:
|
| 17 |
+
|
| 18 |
+
## Training Details
|
| 19 |
+
- **Base Architecture**: kimi_k2
|
| 20 |
+
- **Optimizer**: muon
|
| 21 |
+
- **Learning Rate**: 0.02
|
| 22 |
+
- **Weight Decay**: 0.1
|
| 23 |
+
- **Dataset**: loggenix-rca
|
| 24 |
+
- **Hidden Size**: 1024
|
| 25 |
+
- **Epochs**: 1
|
| 26 |
+
|
| 27 |
+
## Model Architecture
|
| 28 |
+
This is a Mixture of Experts (MoE) model based on DeepseekV3 architecture.
|
| 29 |
+
|
| 30 |
+
## Usage
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 34 |
+
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained("kshitijthakkar/loggenix-nanoKimi2-test")
|
| 36 |
+
model = AutoModelForCausalLM.from_pretrained("kshitijthakkar/loggenix-nanoKimi2-test")
|
| 37 |
+
|
| 38 |
+
# Generate text
|
| 39 |
+
input_text = "Hello, how are you?"
|
| 40 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 41 |
+
outputs = model.generate(**inputs, max_length=50, do_sample=True, temperature=0.7)
|
| 42 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 43 |
+
print(response)
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## Training Script
|
| 47 |
+
This model was trained using a custom training script with the Muon optimizer (if specified).
|