File size: 9,049 Bytes
c8e1cc1 fcea42a c8e1cc1 4963d79 dd0171c c8e1cc1 1cc7d08 0013e83 6e272c3 1cc7d08 7c752d0 9fe4ffd 1cc7d08 9fe4ffd 1cc7d08 c8e1cc1 4963d79 c8e1cc1 9fe4ffd 774ae62 9fe4ffd 1cc7d08 29cb477 5e47dbf 4963d79 c8e1cc1 1cc7d08 c8e1cc1 7a7669e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
---
license: other
license_name: krutrim-community-license-agreement-version-1.0
license_link: LICENSE.md
language:
- hi
- bn
- ta
- te
- gu
- or
- en
- as
- ml
- mr
- kn
pipeline_tag: image-text-to-text
---
# Chitrarth: Bridging Vision and Language for a Billion People
[Paper Link👁️](https://arxiv.org/abs/2502.15392)
[](https://huggingface.co/krutrim-ai-labs/chitrarth) [](https://github.com/ola-krutrim/Chitrarth) [](https://cloud.olakrutrim.com/console/inference-service?section=models&modelName=Krutrim&artifactName=chitrarth&artifactType=model) [](https://ai-labs.olakrutrim.com/models/Chitrarth-1)
## 1. Introduction
Chitrarth (Chitra: Image; Artha: Meaning) is a multilingual VLM that integrates a state-of-the-art multilingual Large Language Model (LLM) with a vision module. This model is trained primarily on multilingual image-text data and is designed to work across 10 prominent Indian languages, including Hindi, Bengali, Telugu, Tamil, Marathi, Gujarati, Kannada, Malayalam, Odia, and Assamese, as well as English
[](https://www.youtube.com/watch?v=TmzEweLIgsc)
## 2. Model Summary
### Key Features
- **Model:** Krutrim-1 as the base LLM, SigLIP as the visual encoder with 2 layer MLP
- **Languages Supported:** 10 Indic languages - Hindi, Bengali, Telugu, Tamil, Marathi, Gujarati, Kannada, Malayalam, Odia, and Assamese, as well as English
- **Usage:** General purpose VLM

## 3. API Platform
Visit [Chitrarth Online](https://cloud.olakrutrim.com/console/inference-service?section=models&modelName=Krutrim&artifactName=chitrarth&artifactType=model) to access the model via the web interface.
## 4. Inference code
```
git clone https://github.com/ola-krutrim/Chitrarth.git
conda create --name chitrarth python=3.10
conda activate chitrarth
cd Chitrarth
pip install -e .
python chitrarth/inference.py --model-path "krutrim-ai-labs/chitrarth" --image-file "assets/govt_school.jpeg" --query "Explain the image. "
```
## 5. Evaluation Results

Performance against SOTA VLMs on different academic multimodal tasks. Our model consistently outperforms IDEFICS 2 (7B) and PALO 7B on different benchmarks while remaining competitive on TextVQA and Vizwiz.
We introduce **BharatBench**, a comprehensive evaluation benchmark suite designed for **10 under-resourced Indic languages** across **3 tasks**. The performance of **Chitrarth** on the BharatBench Evaluation framework sets a strong baseline for future research in this domain. Our model is unique in its ability to handle all included languages.
Below are the performance results of **Chitrarth** on BharatBench across three evaluation tasks: **POPE**, **LLaVA-Bench**, and **MMVet**.
| **Language** | **POPE** | **LLaVA-Bench** | **MMVet** |
|----------------|----------|-----------------|-----------|
| **Telugu** | 79.9 | 54.8 | 43.76 |
| **Hindi** | 78.68 | 51.5 | 38.85 |
| **Bengali** | 83.24 | 53.7 | 33.24 |
| **Malayalam** | 85.29 | 55.5 | 25.36 |
| **Kannada** | 85.52 | 58.1 | 46.19 |
| **Assamese** | 55.59 | 59.1 | 37.29 |
| **Tamil** | 83.28 | 58.3 | 34.31 |
| **Marathi** | 79.17 | 52.8 | 40.96 |
| **Gujarati** | 84.75 | 55.9 | 39.03 |
| **Odia** | 82.03 | 62.8 | 19.67 |
| **English** | 87.63 | 67.9 | 30.49 |
## 6. License
This code repository and the model weights are licensed under the [Krutrim Community License.](LICENSE.md)
## 7. Citation
```
@inproceedings{
khan2024chitrarth,
title={Chitrarth: Bridging Vision and Language for a Billion People},
author={Shaharukh Khan, Ayush Tarun, Abhinav Ravi, Ali Faraz, Praveen Kumar Pokala, Anagha Bhangare, Raja Kolla, Chandra Khatri, Shubham Agarwal},
booktitle={NeurIPS Multimodal Algorithmic Reasoning},
year={2024},
}
```
## 8. Contact
Contributions are welcome! If you have any improvements or suggestions, feel free to submit a pull request on GitHub.
## 9. Acknowledgement
Chitrarth is built with reference to the code of the following projects: [Transformers](https://github.com/huggingface/transformers), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work! |