lunar_lander / config.json
krisia13's picture
Entrenamiento y evaluaci贸n con 1,000,000 de iteraciones
dce6ac5 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7808801a5e40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7808801a5ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7808801a5f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7808801a6020>", "_build": "<function ActorCriticPolicy._build at 0x7808801a60c0>", "forward": "<function ActorCriticPolicy.forward at 0x7808801a6160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7808801a6200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7808801a62a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7808801a6340>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7808801a63e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7808801a6480>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7808801a6520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78088011c940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1742230637544891050, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAAAAkEC7j+YsukJY97wEPWY2kISfuNq8yrUAAAAAAAAAALNhxL3Ddwm8bUuGPHFmLz1/BGu9+g2xOwAAgD8AAIA/pprjPSmkY7po2EC903ITNWp0Ijt1smy0AAAAAAAAgD8A0I46e1aMuvRFo7uqpSE1kGEtOgUclrQAAIA/AAAAAABkTj3SKbA/SmDzPl4yjL4kXYA8us0OPgAAAAAAAAAATVsZvcd6jj8IrOa9lQIpv6WpR70GlKu9AAAAAAAAAAAAEQu+OwXoPVaC3jxj4ou+ez5gOsNiKz0AAAAAAAAAAGZmnzl6zrU/rRr8PDDl1j5dHbW5/mvkuwAAAAAAAAAAnpi0vu8ZiT9ObYe+hQW8vt3Ntr4eXZg9AAAAAAAAAAAA4A499sxOugbwEbxyzBu2FDWQuh8LjjUAAIA/AAAAANPmOD7Ff8U+Q7ihvENN0L57tyQ+a6oSvQAAAAAAAAAAZv+cPAStuD/WxnM+FSGrPUohPTzNke08AAAAAAAAAADKqGi+ssYJP3JsMLwFRam+OXmwvTxgtz0AAAAAAAAAAE3s370Y0Ik/qhgZvv4jJL8IHp69oraPOQAAAAAAAAAAClx/vi1ArD5pCQQ+BdbJvhVzqLvqUu09AAAAAAAAAAA9O4a+UJWyPtVgTj5TZuS+Zv4/POcawD0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHE8zjR2KVKMAWyUS9iMAXSUR0CcLDN1yNn5dX2UKGgGR0BwMBwDNhVmaAdL4GgIR0CcLEfZVXFMdX2UKGgGR0BwUqzD4xk/aAdL1GgIR0CcL0To+wC9dX2UKGgGR0BvgpdOZb6haAdLxGgIR0CcMM/oq0+ldX2UKGgGR0ByUhl/YrauaAdL5GgIR0CcMmAkcCHRdX2UKGgGR0Bumo8bJfY0aAdNMQFoCEdAnDLL6LwWnHV9lChoBkdAcZJJLuhK2GgHTfQCaAhHQJwzl28qWkd1fZQoaAZHQG/7IS13MZBoB0v6aAhHQJw2s5yU9p11fZQoaAZHQGTppj2Bas9oB03oA2gIR0CcODBkqc3EdX2UKGgGR0Bd+Ntygf2caAdN6ANoCEdAnJk+OCGvfXV9lChoBkdAc/S580DU3GgHS+RoCEdAnJlhtpEhJXV9lChoBkdAZSPe8f3evmgHTegDaAhHQJybqef7Jnx1fZQoaAZHQHNSup4rz5JoB010AWgIR0CcnCxoZhrndX2UKGgGR0ByVCmCROk+aAdNCAFoCEdAnJxeb3Gn43V9lChoBkdAcLvqe9SMtWgHS9xoCEdAnJx4kAxSHnV9lChoBkdAcVpMKCxu9GgHS/VoCEdAnJ4ld1MdtHV9lChoBkdAbUexubZvk2gHS9JoCEdAnKHKfra/RHV9lChoBkdAcNeL/0dzXGgHS+doCEdAnKHjXnQpnnV9lChoBkdAZdbU/fO2RmgHTegDaAhHQJyh4/Spiqh1fZQoaAZHQHJBeWWyC4BoB02fAWgIR0Cco+zfJmuldX2UKGgGR0ByJetCAtnPaAdLymgIR0CcpKgpjMFEdX2UKGgGR0Bhce4iHIp6aAdN6ANoCEdAnKTd5dGAkXV9lChoBkdAYxvcgQpWm2gHTegDaAhHQJyllVxS5y51fZQoaAZHQHEcHNX5nDloB0vraAhHQJyl3aEi+td1fZQoaAZHQGHue4LCvX9oB03oA2gIR0Ccpg2Kl54XdX2UKGgGR0BwSQKu0TlDaAdNtgFoCEdAnKijs+mm+HV9lChoBkdAcD55D7ZWaWgHS7loCEdAnKkKlLvkR3V9lChoBkdAcwpspobn5mgHTUwBaAhHQJypKL/CIk91fZQoaAZHQHDVd5Qgs9VoB0u+aAhHQJypOVgQYk51fZQoaAZHQHCH163RXwNoB00tAWgIR0CcqeCXhOxjdX2UKGgGR0BxqmCf6Gg0aAdL1WgIR0CcqefZElVtdX2UKGgGR0BL6LWqcVgyaAdLoWgIR0Ccqxr+5vtMdX2UKGgGR0BuE047zTWoaAdL9mgIR0CcrLFtbcGkdX2UKGgGR0BgRpfdAPd3aAdN6ANoCEdAnKz7n1WbPXV9lChoBkdAcBlqREF4cGgHS/loCEdAnK1doakylHV9lChoBkdAcY2a0x/NJWgHTdYDaAhHQJyuUiNbTtt1fZQoaAZHQHEf2JBPbfxoB0u2aAhHQJyvDmaH9FZ1fZQoaAZHQHFsmitaIN5oB00eAWgIR0Ccr5N4JNTMdX2UKGgGR0ByCYa2nbZfaAdL4WgIR0CcsBRGMGX5dX2UKGgGR0BwMXOryUcGaAdL1mgIR0CcsCwXZXdTdX2UKGgGR0BvdnIKc/dJaAdL3WgIR0CcsQQID5j6dX2UKGgGR0BxfVwGW2PUaAdL+GgIR0CcsThRZU1idX2UKGgGR0BxmN+c6NlzaAdL8mgIR0CcsatfXwsodX2UKGgGR0BuD/kmx+rmaAdLz2gIR0CcsdH8CPp7dX2UKGgGR0BvdjuDzyz5aAdL32gIR0CctV5ZbILgdX2UKGgGR0ByMNwyZa3aaAdL62gIR0CctV+ee4CqdX2UKGgGR0Bxk6lO45LiaAdNBAFoCEdAnLYdFF2FFnV9lChoBkdAcJc2F36hx2gHS7hoCEdAnLaXizcAR3V9lChoBkdAcP45XU6PsGgHS9FoCEdAnLivAKv3anV9lChoBkdAc1RxIre67WgHTR4BaAhHQJy5pgTh5xB1fZQoaAZHQEUoRbKRuCRoB0vRaAhHQJy6LjENvwV1fZQoaAZHQHHBuYYzi0hoB0v1aAhHQJy6aFbmlqJ1fZQoaAZHQHFkax9oexRoB0vlaAhHQJy7z+XJHRV1fZQoaAZHQD4PVf/m1Y1oB0uZaAhHQJy8G/7BO591fZQoaAZHQHEPbU9ZA6doB0vTaAhHQJy+G8tf5UN1fZQoaAZHQFygIzFdcB5oB03oA2gIR0Ccv34fOlfrdX2UKGgGR0BxZNYDDCP7aAdL9GgIR0CcwG9fTkQxdX2UKGgGR0BwsDN9ph4MaAdLx2gIR0CcwG96Tnq3dX2UKGgGR0BxE5O32EkCaAdNegFoCEdAnMCktRNypHV9lChoBkdAbi6/hVENOWgHS9NoCEdAnMGD6BRQ8HV9lChoBkdAZZVvKEFnqWgHTegDaAhHQJzBmPsAvL51fZQoaAZHQHA24UFjd59oB0vNaAhHQJzBrFKkEcN1fZQoaAZHQHG4xSLqD9RoB0v+aAhHQJzFS4gA6uJ1fZQoaAZHQHD12R3eN1hoB0vjaAhHQJzJUQL/jsF1fZQoaAZHQG8dNx+8XepoB0vGaAhHQJzJacpb2UV1fZQoaAZHQHIZ02DQJHBoB010AWgIR0CcyhH/cWTHdX2UKGgGR0BxJHn0TURWaAdL3WgIR0CcypjW07bMdX2UKGgGR0BeY1T72tdSaAdN6ANoCEdAnMrR2OhkAnV9lChoBkdAbvXvhqCYkWgHTQABaAhHQJzK3OZ9d/t1fZQoaAZHQGypjnvDxb1oB03aA2gIR0Ccy4J1JUYLdX2UKGgGR0BxaAPiDM/yaAdNPAJoCEdAnM0Do6jnFHV9lChoBkdAcAZ5KODJ2mgHS+RoCEdAnM6pLRKHwnV9lChoBkdAcaNl3yI552gHS75oCEdAnNC6RQrMDHV9lChoBkdAbwJ5zHS4OWgHS9toCEdAnNH4kiUxEnV9lChoBkdAcB0YE4ecQWgHS9BoCEdAnNIhFy7wrnV9lChoBkdAcOHvZRKpUGgHS9VoCEdAnNMICyQgcXV9lChoBkdAcC+Ijnmq52gHS/hoCEdAnNRXk92X9nV9lChoBkdAOcA3Lmp2lmgHS69oCEdAnNWL0rbxmXV9lChoBkdAYNgi/O+qR2gHTegDaAhHQJzWUG+sYEZ1fZQoaAZHQGAsl5v99+hoB03oA2gIR0Cc2gaNMoMKdX2UKGgGR0BxGWgZjx0/aAdL72gIR0Cc2mQswtaqdX2UKGgGR0BxMX7ZWaMKaAdNhAFoCEdAnNrAlv60pnV9lChoBkdAcJ+6mO2iL2gHS+JoCEdAnNsjyrgfl3V9lChoBkdAcV+x1gYxcmgHTXwBaAhHQJzb/e0ojOd1fZQoaAZHQD3PbtZ3cHpoB0vCaAhHQJzeFlMAWBV1fZQoaAZHQG8rCojv/ipoB00ZAWgIR0Cc37LuQZGbdX2UKGgGR0Bx0hiiItUXaAdNdgFoCEdAnOE9nCfpU3V9lChoBkdAZqD/3FkxymgHTegDaAhHQJzhkXfqHGl1fZQoaAZHQHIK8TzundhoB0vIaAhHQJzicrFwT/R1fZQoaAZHQHB256Y3Ns5oB01HAWgIR0Cc4sw++ueSdX2UKGgGR0ByZwMuvlltaAdL9GgIR0Cc5Ci4rjHXdX2UKGgGR0By1XXarWAgaAdL3mgIR0Cc5GzuWrwOdX2UKGgGR0BxDBe8f3evaAdL4WgIR0Cc5b4hllK9dX2UKGgGR0BlGQBYFJQMaAdN6ANoCEdAnOanmNipenV9lChoBkdAcIlcRUWEb2gHTecBaAhHQJznwIE8q4J1fZQoaAZHQGT1L2pQ1rJoB03oA2gIR0Cc6FcvduYQdX2UKGgGR0Bb+P8MuvlmaAdN6ANoCEdAnOmQnUlRg3V9lChoBkdAcORKbrkbP2gHTQYBaAhHQJzqLq0MPSV1fZQoaAZHQHEKhh6Skj5oB0u1aAhHQJzqS1stTUB1fZQoaAZHQHCPiuIRAbBoB0vEaAhHQJzqnBBRhtt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}