{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5a57d8f240>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685181230155947214, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFVRmr6u8628K/EFuuKbU7hj3hE+tmMeOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDdHrQgLZzyMAWyUS3iMAXSUR0CZOYbEgntwdX2UKGgGR0A/rNedCmdiaAdLkGgIR0CZOuhf0EowdX2UKGgGR0AucGVzIV/MaAdLqWgIR0CZO9ci4axYdX2UKGgGR0BAdvHDJlreaAdLqWgIR0CZPM64UeuFdX2UKGgGR0AlwvcrRSgoaAdLuGgIR0CZPdTqB3A3dX2UKGgGR0BmfEjzI3iraAdN6ANoCEdAmUUYZMtbtHV9lChoBkdAZe+yylenh2gHTegDaAhHQJlOdSk0rLB1fZQoaAZHQGWAhTfixV1oB03oA2gIR0CZVXMWoFV1dX2UKGgGR0BAVFZPl+3IaAdLrGgIR0CZVmnNgSezdX2UKGgGR0Bg2Whf0EowaAdN6ANoCEdAmVyhsdkrgHV9lChoBkdATbBxLkCFK2gHS5JoCEdAmV10Y8+zMXV9lChoBkdAZ1HES/TLGWgHTegDaAhHQJljtkjHGS91fZQoaAZHQGQzCX6ZYxNoB03oA2gIR0CZafLs8gZCdX2UKGgGR0BqBxB3Roh7aAdNAgFoCEdAmWtl0DEFXHV9lChoBkdAZJpI7Njbz2gHTegDaAhHQJlxjQKKHfx1fZQoaAZHQGFHljVhCt1oB03oA2gIR0CZd8tqpLmIdX2UKGgGR0Bk/icCo0hvaAdN6ANoCEdAmYAzrZ8KHHV9lChoBkdAM2o/A0sOG2gHS5hoCEdAmYJtW2gFo3V9lChoBkfAPWUqUeMho2gHS5xoCEdAmYO2FrVOK3V9lChoBkdAYS+m7aqS5mgHTegDaAhHQJmLO8XenAJ1fZQoaAZHQGas6bvw3HdoB03oA2gIR0CZkW+RHPNWdX2UKGgGR0BgEbTWoWHlaAdN6ANoCEdAmZfJk9U0enV9lChoBkdAaji4bS7XhGgHTSMBaAhHQJmZaj0th/l1fZQoaAZHQGDEcIzFdcBoB03oA2gIR0CZn7dAPd2xdX2UKGgGR0BSov60pmVaaAdLkmgIR0CZoIZ88cMmdX2UKGgGR0BlU+Tkhib2aAdN6ANoCEdAmabDmjj7ynV9lChoBkdAZHMyM1jy4GgHTegDaAhHQJmtPBciW3V1fZQoaAZHQGYGhPKuB+ZoB03oA2gIR0CZtNCm/FisdX2UKGgGR0BturwnYxtYaAdNKwFoCEdAmbdXaFmFrXV9lChoBkdAX0DapPykK2gHTegDaAhHQJnAI052hZh1fZQoaAZHQGVZvQv6CUZoB03oA2gIR0CZxlXLvCuVdX2UKGgGR8AdoNayKNyYaAdLtWgIR0CZx14Y77sOdX2UKGgGR0BlkmCqZML4aAdN6ANoCEdAmc2cPnSv1XV9lChoBkdAZWyEq2Bre2gHTegDaAhHQJnT7kRzzVd1fZQoaAZHQGQ2Z8Sf16FoB03oA2gIR0CZ2h8hLXcydX2UKGgGR0BnA4yTINmUaAdN6ANoCEdAmeBrExZdOnV9lChoBkdAZEm/8EV32WgHTegDaAhHQJnmnQ8fV7R1fZQoaAZHQF/7ksjFAFBoB03oA2gIR0CZ7zJvHcUNdX2UKGgGR0BcKUd/8VHnaAdN6ANoCEdAmffhT0g8sHV9lChoBkdAYZitpVS4v2gHTegDaAhHQJn+M+B6KLt1fZQoaAZHQGtCdnkDIR1oB00bAWgIR0CZ/8xqfvnbdX2UKGgGR0BmABVZLZi/aAdN6ANoCEdAmgYfkNnXd3V9lChoBkdAZBhHT7VJ+WgHTegDaAhHQJoMT4nF5v91fZQoaAZHQD8c+V1Oj7BoB0ukaAhHQJoN1+RYA811fZQoaAZHQFuBbn5i3G5oB03oA2gIR0CaFA1Bt1p1dX2UKGgGR0BW+63I+4b0aAdN6ANoCEdAmho1x82Ji3V9lChoBkdAYOGyprDZUWgHTegDaAhHQJohJNXYDkl1fZQoaAZHQGOOaXBxgiNoB03oA2gIR0CaKm8Zk079dX2UKGgGR0BgjBrJr+HaaAdN6ANoCEdAmjFGgnMMZ3V9lChoBkdAZCQxIre67WgHTegDaAhHQJo3sBGQSzx1fZQoaAZHQCVwfuCwr2BoB0uWaAhHQJo5I9jgAIZ1fZQoaAZHQGLj5bhWHUNoB03oA2gIR0CaP3lkH2RJdX2UKGgGR0BO4sbedkJ8aAdLhmgIR0CaQDwW3z+WdX2UKGgGR8AofD8+A3DOaAdLimgIR0CaQQDlHSWrdX2UKGgGR0Bhj7pRoAXEaAdN6ANoCEdAmkc9TDO1OXV9lChoBkdARmlFOO8012gHS5BoCEdAmkgSaNMoMXV9lChoBkdAS5z50r9VFWgHS45oCEdAmkjbteD3/XV9lChoBkdAZJVK/VRUFWgHTegDaAhHQJpPEZaV2Rt1fZQoaAZHQGQsV/MGHHpoB03oA2gIR0CaVT/qxC6ZdX2UKGgGR0Bln7E1l5GCaAdN6ANoCEdAml233YcvNHV9lChoBkdAY1gXvYvnKWgHTegDaAhHQJpmUMmWt2d1fZQoaAZHQGaL/UONHYpoB03oA2gIR0CabJio86mwdX2UKGgGR0BlBw22oegdaAdN6ANoCEdAmnLloUSIxnV9lChoBkdAY5tnOB19v2gHTegDaAhHQJp5LFXJYDF1fZQoaAZHQGFyPBBRhttoB03oA2gIR0Caf1sKLKmsdX2UKGgGR0Bj/lMsYl6aaAdN6ANoCEdAmoWvqLS/kHV9lChoBkdAZGQKAJ9iMGgHTegDaAhHQJqL/5bhWHV1fZQoaAZHQEIsL2pQ1rJoB0uLaAhHQJqM0b0e2eB1fZQoaAZHQGMFqKxcE/1oB03oA2gIR0CalX7w8W9EdX2UKGgGR0Bgr/Zf2K2saAdN6ANoCEdAmp4hZpztC3V9lChoBkdAZQhqSowVTWgHTegDaAhHQJqkR6mfoRt1fZQoaAZHQGXLMAWBSUFoB03oA2gIR0CaqoEs8PnTdX2UKGgGR0Bk78GVzIV/aAdN6ANoCEdAmrCsoUi6hHV9lChoBkdAZKOIX0oSc2gHTegDaAhHQJq2/GHYYix1fZQoaAZHQGLM4fW+XZ5oB03oA2gIR0CavUERaouPdX2UKGgGR0BToVCswL3LaAdLkmgIR0CavhLrHEMtdX2UKGgGR0BkkQfyPMjeaAdN6ANoCEdAmsRGxyGSIXV9lChoBkdAM/CVB2OhkGgHS6BoCEdAmsWHeN1hcHV9lChoBkdAZnQq0dBBzGgHTegDaAhHQJrOdepn6Ed1fZQoaAZHQENx/ffoA4poB0vDaAhHQJrQIWweNkx1fZQoaAZHQGASiG34Kx9oB03oA2gIR0Ca13TRplBhdX2UKGgGR0BfEjl5nlGPaAdN6ANoCEdAmt3DCUHIIXV9lChoBkdAFnahHskY42gHS75oCEdAmt7QumJm/XV9lChoBkfAInt6HCXQdGgHS4xoCEdAmuArLdN34nV9lChoBkdAY5wHck+otWgHTegDaAhHQJrmY8IRh+h1fZQoaAZHQEsIJm/WUbFoB0uZaAhHQJrnQEZBLPF1fZQoaAZHQFpnagmJFb5oB03oA2gIR0Ca7Y1E3KjjdX2UKGgGR0AxJ88La24NaAdLpmgIR0Ca7n1WbPQfdX2UKGgGR0BiuhgeA/cGaAdN6ANoCEdAmvTNBfKISHV9lChoBkdAY7OzZ6D5CWgHTegDaAhHQJr7BkK/mDF1fZQoaAZHQEaJoUzsQd1oB0ukaAhHQJr8JMQEpy91fZQoaAZHQGQzCEpRXOpoB03oA2gIR0CbBRJ3PiT/dX2UKGgGR0BCCQPI4lyBaAdLmGgIR0CbBmjgAIY4dX2UKGgGR0BkEJkd3jdYaAdN6ANoCEdAmw4cVLzwt3V9lChoBkdARbQhW5paimgHS7BoCEdAmw8eQMhHLHV9lChoBkdAY7uh4+r2g2gHTegDaAhHQJsVZAgPmPp1fZQoaAZHQFvq5mRNh3JoB03oA2gIR0CbG7IrvsqsdX2UKGgGR0Bi/FAiV0LdaAdN6ANoCEdAmyHXAZbY9XV9lChoBkdAZIRwCr92o2gHTegDaAhHQJsoBUHY6GR1fZQoaAZHQD9x/c32mHhoB0ueaAhHQJso6HTI/7l1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.985, "ent_coef": 0.04, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}