Commit
·
63ebe11
1
Parent(s):
de9503c
Upload a test PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo_lunarlander_unit1.zip +3 -0
- ppo_lunarlander_unit1/_stable_baselines3_version +1 -0
- ppo_lunarlander_unit1/data +99 -0
- ppo_lunarlander_unit1/policy.optimizer.pth +3 -0
- ppo_lunarlander_unit1/policy.pth +3 -0
- ppo_lunarlander_unit1/pytorch_variables.pth +3 -0
- ppo_lunarlander_unit1/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 175.79 +/- 103.31
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5a57d96cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5a57d96d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5a57d96dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5a57d96e60>", "_build": "<function ActorCriticPolicy._build at 0x7f5a57d96ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5a57d96f80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5a57d97010>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5a57d970a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5a57d97130>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5a57d971c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5a57d97250>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5a57d972e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5a57d8f240>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685181230155947214, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFVRmr6u8628K/EFuuKbU7hj3hE+tmMeOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDdHrQgLZzyMAWyUS3iMAXSUR0CZOYbEgntwdX2UKGgGR0A/rNedCmdiaAdLkGgIR0CZOuhf0EowdX2UKGgGR0AucGVzIV/MaAdLqWgIR0CZO9ci4axYdX2UKGgGR0BAdvHDJlreaAdLqWgIR0CZPM64UeuFdX2UKGgGR0AlwvcrRSgoaAdLuGgIR0CZPdTqB3A3dX2UKGgGR0BmfEjzI3iraAdN6ANoCEdAmUUYZMtbtHV9lChoBkdAZe+yylenh2gHTegDaAhHQJlOdSk0rLB1fZQoaAZHQGWAhTfixV1oB03oA2gIR0CZVXMWoFV1dX2UKGgGR0BAVFZPl+3IaAdLrGgIR0CZVmnNgSezdX2UKGgGR0Bg2Whf0EowaAdN6ANoCEdAmVyhsdkrgHV9lChoBkdATbBxLkCFK2gHS5JoCEdAmV10Y8+zMXV9lChoBkdAZ1HES/TLGWgHTegDaAhHQJljtkjHGS91fZQoaAZHQGQzCX6ZYxNoB03oA2gIR0CZafLs8gZCdX2UKGgGR0BqBxB3Roh7aAdNAgFoCEdAmWtl0DEFXHV9lChoBkdAZJpI7Njbz2gHTegDaAhHQJlxjQKKHfx1fZQoaAZHQGFHljVhCt1oB03oA2gIR0CZd8tqpLmIdX2UKGgGR0Bk/icCo0hvaAdN6ANoCEdAmYAzrZ8KHHV9lChoBkdAM2o/A0sOG2gHS5hoCEdAmYJtW2gFo3V9lChoBkfAPWUqUeMho2gHS5xoCEdAmYO2FrVOK3V9lChoBkdAYS+m7aqS5mgHTegDaAhHQJmLO8XenAJ1fZQoaAZHQGas6bvw3HdoB03oA2gIR0CZkW+RHPNWdX2UKGgGR0BgEbTWoWHlaAdN6ANoCEdAmZfJk9U0enV9lChoBkdAaji4bS7XhGgHTSMBaAhHQJmZaj0th/l1fZQoaAZHQGDEcIzFdcBoB03oA2gIR0CZn7dAPd2xdX2UKGgGR0BSov60pmVaaAdLkmgIR0CZoIZ88cMmdX2UKGgGR0BlU+Tkhib2aAdN6ANoCEdAmabDmjj7ynV9lChoBkdAZHMyM1jy4GgHTegDaAhHQJmtPBciW3V1fZQoaAZHQGYGhPKuB+ZoB03oA2gIR0CZtNCm/FisdX2UKGgGR0BturwnYxtYaAdNKwFoCEdAmbdXaFmFrXV9lChoBkdAX0DapPykK2gHTegDaAhHQJnAI052hZh1fZQoaAZHQGVZvQv6CUZoB03oA2gIR0CZxlXLvCuVdX2UKGgGR8AdoNayKNyYaAdLtWgIR0CZx14Y77sOdX2UKGgGR0BlkmCqZML4aAdN6ANoCEdAmc2cPnSv1XV9lChoBkdAZWyEq2Bre2gHTegDaAhHQJnT7kRzzVd1fZQoaAZHQGQ2Z8Sf16FoB03oA2gIR0CZ2h8hLXcydX2UKGgGR0BnA4yTINmUaAdN6ANoCEdAmeBrExZdOnV9lChoBkdAZEm/8EV32WgHTegDaAhHQJnmnQ8fV7R1fZQoaAZHQF/7ksjFAFBoB03oA2gIR0CZ7zJvHcUNdX2UKGgGR0BcKUd/8VHnaAdN6ANoCEdAmffhT0g8sHV9lChoBkdAYZitpVS4v2gHTegDaAhHQJn+M+B6KLt1fZQoaAZHQGtCdnkDIR1oB00bAWgIR0CZ/8xqfvnbdX2UKGgGR0BmABVZLZi/aAdN6ANoCEdAmgYfkNnXd3V9lChoBkdAZBhHT7VJ+WgHTegDaAhHQJoMT4nF5v91fZQoaAZHQD8c+V1Oj7BoB0ukaAhHQJoN1+RYA811fZQoaAZHQFuBbn5i3G5oB03oA2gIR0CaFA1Bt1p1dX2UKGgGR0BW+63I+4b0aAdN6ANoCEdAmho1x82Ji3V9lChoBkdAYOGyprDZUWgHTegDaAhHQJohJNXYDkl1fZQoaAZHQGOOaXBxgiNoB03oA2gIR0CaKm8Zk079dX2UKGgGR0BgjBrJr+HaaAdN6ANoCEdAmjFGgnMMZ3V9lChoBkdAZCQxIre67WgHTegDaAhHQJo3sBGQSzx1fZQoaAZHQCVwfuCwr2BoB0uWaAhHQJo5I9jgAIZ1fZQoaAZHQGLj5bhWHUNoB03oA2gIR0CaP3lkH2RJdX2UKGgGR0BO4sbedkJ8aAdLhmgIR0CaQDwW3z+WdX2UKGgGR8AofD8+A3DOaAdLimgIR0CaQQDlHSWrdX2UKGgGR0Bhj7pRoAXEaAdN6ANoCEdAmkc9TDO1OXV9lChoBkdARmlFOO8012gHS5BoCEdAmkgSaNMoMXV9lChoBkdAS5z50r9VFWgHS45oCEdAmkjbteD3/XV9lChoBkdAZJVK/VRUFWgHTegDaAhHQJpPEZaV2Rt1fZQoaAZHQGQsV/MGHHpoB03oA2gIR0CaVT/qxC6ZdX2UKGgGR0Bln7E1l5GCaAdN6ANoCEdAml233YcvNHV9lChoBkdAY1gXvYvnKWgHTegDaAhHQJpmUMmWt2d1fZQoaAZHQGaL/UONHYpoB03oA2gIR0CabJio86mwdX2UKGgGR0BlBw22oegdaAdN6ANoCEdAmnLloUSIxnV9lChoBkdAY5tnOB19v2gHTegDaAhHQJp5LFXJYDF1fZQoaAZHQGFyPBBRhttoB03oA2gIR0Caf1sKLKmsdX2UKGgGR0Bj/lMsYl6aaAdN6ANoCEdAmoWvqLS/kHV9lChoBkdAZGQKAJ9iMGgHTegDaAhHQJqL/5bhWHV1fZQoaAZHQEIsL2pQ1rJoB0uLaAhHQJqM0b0e2eB1fZQoaAZHQGMFqKxcE/1oB03oA2gIR0CalX7w8W9EdX2UKGgGR0Bgr/Zf2K2saAdN6ANoCEdAmp4hZpztC3V9lChoBkdAZQhqSowVTWgHTegDaAhHQJqkR6mfoRt1fZQoaAZHQGXLMAWBSUFoB03oA2gIR0CaqoEs8PnTdX2UKGgGR0Bk78GVzIV/aAdN6ANoCEdAmrCsoUi6hHV9lChoBkdAZKOIX0oSc2gHTegDaAhHQJq2/GHYYix1fZQoaAZHQGLM4fW+XZ5oB03oA2gIR0CavUERaouPdX2UKGgGR0BToVCswL3LaAdLkmgIR0CavhLrHEMtdX2UKGgGR0BkkQfyPMjeaAdN6ANoCEdAmsRGxyGSIXV9lChoBkdAM/CVB2OhkGgHS6BoCEdAmsWHeN1hcHV9lChoBkdAZnQq0dBBzGgHTegDaAhHQJrOdepn6Ed1fZQoaAZHQENx/ffoA4poB0vDaAhHQJrQIWweNkx1fZQoaAZHQGASiG34Kx9oB03oA2gIR0Ca13TRplBhdX2UKGgGR0BfEjl5nlGPaAdN6ANoCEdAmt3DCUHIIXV9lChoBkdAFnahHskY42gHS75oCEdAmt7QumJm/XV9lChoBkfAInt6HCXQdGgHS4xoCEdAmuArLdN34nV9lChoBkdAY5wHck+otWgHTegDaAhHQJrmY8IRh+h1fZQoaAZHQEsIJm/WUbFoB0uZaAhHQJrnQEZBLPF1fZQoaAZHQFpnagmJFb5oB03oA2gIR0Ca7Y1E3KjjdX2UKGgGR0AxJ88La24NaAdLpmgIR0Ca7n1WbPQfdX2UKGgGR0BiuhgeA/cGaAdN6ANoCEdAmvTNBfKISHV9lChoBkdAY7OzZ6D5CWgHTegDaAhHQJr7BkK/mDF1fZQoaAZHQEaJoUzsQd1oB0ukaAhHQJr8JMQEpy91fZQoaAZHQGQzCEpRXOpoB03oA2gIR0CbBRJ3PiT/dX2UKGgGR0BCCQPI4lyBaAdLmGgIR0CbBmjgAIY4dX2UKGgGR0BkEJkd3jdYaAdN6ANoCEdAmw4cVLzwt3V9lChoBkdARbQhW5paimgHS7BoCEdAmw8eQMhHLHV9lChoBkdAY7uh4+r2g2gHTegDaAhHQJsVZAgPmPp1fZQoaAZHQFvq5mRNh3JoB03oA2gIR0CbG7IrvsqsdX2UKGgGR0Bi/FAiV0LdaAdN6ANoCEdAmyHXAZbY9XV9lChoBkdAZIRwCr92o2gHTegDaAhHQJsoBUHY6GR1fZQoaAZHQD9x/c32mHhoB0ueaAhHQJso6HTI/7l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.985, "ent_coef": 0.04, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo_lunarlander_unit1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf1c07d3608c54ea4594037f62a8498272443f8038c6ed670b6719a6d83bd1db
|
3 |
+
size 146063
|
ppo_lunarlander_unit1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo_lunarlander_unit1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f5a57d96cb0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5a57d96d40>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5a57d96dd0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5a57d96e60>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f5a57d96ef0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f5a57d96f80>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5a57d97010>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5a57d970a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f5a57d97130>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5a57d971c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5a57d97250>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5a57d972e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f5a57d8f240>"
|
21 |
+
},
|
22 |
+
"verbose": 0,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1685181230155947214,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFVRmr6u8628K/EFuuKbU7hj3hE+tmMeOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVJwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDdHrQgLZzyMAWyUS3iMAXSUR0CZOYbEgntwdX2UKGgGR0A/rNedCmdiaAdLkGgIR0CZOuhf0EowdX2UKGgGR0AucGVzIV/MaAdLqWgIR0CZO9ci4axYdX2UKGgGR0BAdvHDJlreaAdLqWgIR0CZPM64UeuFdX2UKGgGR0AlwvcrRSgoaAdLuGgIR0CZPdTqB3A3dX2UKGgGR0BmfEjzI3iraAdN6ANoCEdAmUUYZMtbtHV9lChoBkdAZe+yylenh2gHTegDaAhHQJlOdSk0rLB1fZQoaAZHQGWAhTfixV1oB03oA2gIR0CZVXMWoFV1dX2UKGgGR0BAVFZPl+3IaAdLrGgIR0CZVmnNgSezdX2UKGgGR0Bg2Whf0EowaAdN6ANoCEdAmVyhsdkrgHV9lChoBkdATbBxLkCFK2gHS5JoCEdAmV10Y8+zMXV9lChoBkdAZ1HES/TLGWgHTegDaAhHQJljtkjHGS91fZQoaAZHQGQzCX6ZYxNoB03oA2gIR0CZafLs8gZCdX2UKGgGR0BqBxB3Roh7aAdNAgFoCEdAmWtl0DEFXHV9lChoBkdAZJpI7Njbz2gHTegDaAhHQJlxjQKKHfx1fZQoaAZHQGFHljVhCt1oB03oA2gIR0CZd8tqpLmIdX2UKGgGR0Bk/icCo0hvaAdN6ANoCEdAmYAzrZ8KHHV9lChoBkdAM2o/A0sOG2gHS5hoCEdAmYJtW2gFo3V9lChoBkfAPWUqUeMho2gHS5xoCEdAmYO2FrVOK3V9lChoBkdAYS+m7aqS5mgHTegDaAhHQJmLO8XenAJ1fZQoaAZHQGas6bvw3HdoB03oA2gIR0CZkW+RHPNWdX2UKGgGR0BgEbTWoWHlaAdN6ANoCEdAmZfJk9U0enV9lChoBkdAaji4bS7XhGgHTSMBaAhHQJmZaj0th/l1fZQoaAZHQGDEcIzFdcBoB03oA2gIR0CZn7dAPd2xdX2UKGgGR0BSov60pmVaaAdLkmgIR0CZoIZ88cMmdX2UKGgGR0BlU+Tkhib2aAdN6ANoCEdAmabDmjj7ynV9lChoBkdAZHMyM1jy4GgHTegDaAhHQJmtPBciW3V1fZQoaAZHQGYGhPKuB+ZoB03oA2gIR0CZtNCm/FisdX2UKGgGR0BturwnYxtYaAdNKwFoCEdAmbdXaFmFrXV9lChoBkdAX0DapPykK2gHTegDaAhHQJnAI052hZh1fZQoaAZHQGVZvQv6CUZoB03oA2gIR0CZxlXLvCuVdX2UKGgGR8AdoNayKNyYaAdLtWgIR0CZx14Y77sOdX2UKGgGR0BlkmCqZML4aAdN6ANoCEdAmc2cPnSv1XV9lChoBkdAZWyEq2Bre2gHTegDaAhHQJnT7kRzzVd1fZQoaAZHQGQ2Z8Sf16FoB03oA2gIR0CZ2h8hLXcydX2UKGgGR0BnA4yTINmUaAdN6ANoCEdAmeBrExZdOnV9lChoBkdAZEm/8EV32WgHTegDaAhHQJnmnQ8fV7R1fZQoaAZHQF/7ksjFAFBoB03oA2gIR0CZ7zJvHcUNdX2UKGgGR0BcKUd/8VHnaAdN6ANoCEdAmffhT0g8sHV9lChoBkdAYZitpVS4v2gHTegDaAhHQJn+M+B6KLt1fZQoaAZHQGtCdnkDIR1oB00bAWgIR0CZ/8xqfvnbdX2UKGgGR0BmABVZLZi/aAdN6ANoCEdAmgYfkNnXd3V9lChoBkdAZBhHT7VJ+WgHTegDaAhHQJoMT4nF5v91fZQoaAZHQD8c+V1Oj7BoB0ukaAhHQJoN1+RYA811fZQoaAZHQFuBbn5i3G5oB03oA2gIR0CaFA1Bt1p1dX2UKGgGR0BW+63I+4b0aAdN6ANoCEdAmho1x82Ji3V9lChoBkdAYOGyprDZUWgHTegDaAhHQJohJNXYDkl1fZQoaAZHQGOOaXBxgiNoB03oA2gIR0CaKm8Zk079dX2UKGgGR0BgjBrJr+HaaAdN6ANoCEdAmjFGgnMMZ3V9lChoBkdAZCQxIre67WgHTegDaAhHQJo3sBGQSzx1fZQoaAZHQCVwfuCwr2BoB0uWaAhHQJo5I9jgAIZ1fZQoaAZHQGLj5bhWHUNoB03oA2gIR0CaP3lkH2RJdX2UKGgGR0BO4sbedkJ8aAdLhmgIR0CaQDwW3z+WdX2UKGgGR8AofD8+A3DOaAdLimgIR0CaQQDlHSWrdX2UKGgGR0Bhj7pRoAXEaAdN6ANoCEdAmkc9TDO1OXV9lChoBkdARmlFOO8012gHS5BoCEdAmkgSaNMoMXV9lChoBkdAS5z50r9VFWgHS45oCEdAmkjbteD3/XV9lChoBkdAZJVK/VRUFWgHTegDaAhHQJpPEZaV2Rt1fZQoaAZHQGQsV/MGHHpoB03oA2gIR0CaVT/qxC6ZdX2UKGgGR0Bln7E1l5GCaAdN6ANoCEdAml233YcvNHV9lChoBkdAY1gXvYvnKWgHTegDaAhHQJpmUMmWt2d1fZQoaAZHQGaL/UONHYpoB03oA2gIR0CabJio86mwdX2UKGgGR0BlBw22oegdaAdN6ANoCEdAmnLloUSIxnV9lChoBkdAY5tnOB19v2gHTegDaAhHQJp5LFXJYDF1fZQoaAZHQGFyPBBRhttoB03oA2gIR0Caf1sKLKmsdX2UKGgGR0Bj/lMsYl6aaAdN6ANoCEdAmoWvqLS/kHV9lChoBkdAZGQKAJ9iMGgHTegDaAhHQJqL/5bhWHV1fZQoaAZHQEIsL2pQ1rJoB0uLaAhHQJqM0b0e2eB1fZQoaAZHQGMFqKxcE/1oB03oA2gIR0CalX7w8W9EdX2UKGgGR0Bgr/Zf2K2saAdN6ANoCEdAmp4hZpztC3V9lChoBkdAZQhqSowVTWgHTegDaAhHQJqkR6mfoRt1fZQoaAZHQGXLMAWBSUFoB03oA2gIR0CaqoEs8PnTdX2UKGgGR0Bk78GVzIV/aAdN6ANoCEdAmrCsoUi6hHV9lChoBkdAZKOIX0oSc2gHTegDaAhHQJq2/GHYYix1fZQoaAZHQGLM4fW+XZ5oB03oA2gIR0CavUERaouPdX2UKGgGR0BToVCswL3LaAdLkmgIR0CavhLrHEMtdX2UKGgGR0BkkQfyPMjeaAdN6ANoCEdAmsRGxyGSIXV9lChoBkdAM/CVB2OhkGgHS6BoCEdAmsWHeN1hcHV9lChoBkdAZnQq0dBBzGgHTegDaAhHQJrOdepn6Ed1fZQoaAZHQENx/ffoA4poB0vDaAhHQJrQIWweNkx1fZQoaAZHQGASiG34Kx9oB03oA2gIR0Ca13TRplBhdX2UKGgGR0BfEjl5nlGPaAdN6ANoCEdAmt3DCUHIIXV9lChoBkdAFnahHskY42gHS75oCEdAmt7QumJm/XV9lChoBkfAInt6HCXQdGgHS4xoCEdAmuArLdN34nV9lChoBkdAY5wHck+otWgHTegDaAhHQJrmY8IRh+h1fZQoaAZHQEsIJm/WUbFoB0uZaAhHQJrnQEZBLPF1fZQoaAZHQFpnagmJFb5oB03oA2gIR0Ca7Y1E3KjjdX2UKGgGR0AxJ88La24NaAdLpmgIR0Ca7n1WbPQfdX2UKGgGR0BiuhgeA/cGaAdN6ANoCEdAmvTNBfKISHV9lChoBkdAY7OzZ6D5CWgHTegDaAhHQJr7BkK/mDF1fZQoaAZHQEaJoUzsQd1oB0ukaAhHQJr8JMQEpy91fZQoaAZHQGQzCEpRXOpoB03oA2gIR0CbBRJ3PiT/dX2UKGgGR0BCCQPI4lyBaAdLmGgIR0CbBmjgAIY4dX2UKGgGR0BkEJkd3jdYaAdN6ANoCEdAmw4cVLzwt3V9lChoBkdARbQhW5paimgHS7BoCEdAmw8eQMhHLHV9lChoBkdAY7uh4+r2g2gHTegDaAhHQJsVZAgPmPp1fZQoaAZHQFvq5mRNh3JoB03oA2gIR0CbG7IrvsqsdX2UKGgGR0Bi/FAiV0LdaAdN6ANoCEdAmyHXAZbY9XV9lChoBkdAZIRwCr92o2gHTegDaAhHQJsoBUHY6GR1fZQoaAZHQD9x/c32mHhoB0ueaAhHQJso6HTI/7l1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.995,
|
82 |
+
"gae_lambda": 0.985,
|
83 |
+
"ent_coef": 0.04,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 128,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo_lunarlander_unit1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8b49238a9d1d577b2a4d04b19403cc75bda73ea24d12318ace90f906e407564
|
3 |
+
size 87929
|
ppo_lunarlander_unit1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28435d54b91e8d283069cf8471f9980ed2af36f0f3b2ecd3c58787c0b8086489
|
3 |
+
size 43329
|
ppo_lunarlander_unit1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_lunarlander_unit1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (184 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 175.79372061606796, "std_reward": 103.30922067688482, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-27T10:22:56.925276"}
|