|
from typing import Union, Optional, Dict, List, Any |
|
import requests |
|
|
|
import torch |
|
import numpy as np |
|
|
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
from transformers.pipelines.automatic_speech_recognition import AutomaticSpeechRecognitionPipeline, chunk_iter |
|
from transformers.utils import is_torchaudio_available |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.tokenization_utils import PreTrainedTokenizer |
|
from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor |
|
from pyannote.audio import Pipeline |
|
from pyannote.core.annotation import Annotation |
|
|
|
|
|
class SpeakerDiarization: |
|
|
|
def __init__(self, model_id: str, device: torch.device): |
|
self.device = device |
|
self.pipeline = Pipeline.from_pretrained(model_id) |
|
self.pipeline = self.pipeline.to(self.device) |
|
|
|
def __call__(self, |
|
audio: Union[str, torch.Tensor, np.ndarray], |
|
sampling_rate: Optional[int] = None) -> Annotation: |
|
if type(audio) is torch.Tensor or type(audio) is np.ndarray: |
|
if sampling_rate is None: |
|
raise ValueError("sampling_rate must be provided") |
|
if type(audio) is np.ndarray: |
|
audio = torch.as_tensor(audio) |
|
audio = torch.as_tensor(audio, dtype=torch.float32) |
|
if len(audio.shape) == 1: |
|
audio = audio.unsqueeze(0) |
|
elif len(audio.shape) > 3: |
|
raise ValueError("audio shape must be (channel, time)") |
|
audio = {"waveform": audio.to(self.device), "sample_rate": sampling_rate} |
|
output = self.pipeline(audio) |
|
return output |
|
|
|
|
|
class KotobaWhisperPipeline(AutomaticSpeechRecognitionPipeline): |
|
|
|
def __init__(self, |
|
model: "PreTrainedModel", |
|
model_diarizarization: str="pyannote/speaker-diarization-3.1", |
|
feature_extractor: Union["SequenceFeatureExtractor", str] = None, |
|
tokenizer: Optional[PreTrainedTokenizer] = None, |
|
device: Union[int, "torch.device"] = None, |
|
device_diarizarization: Union[int, "torch.device"] = None, |
|
torch_dtype: Optional[Union[str, "torch.dtype"]] = None, |
|
return_unique_speaker: bool = False, |
|
**kwargs): |
|
self.type = "seq2seq_whisper" |
|
if device is None: |
|
device = "cpu" |
|
if device_diarizarization is None: |
|
device_diarizarization = device |
|
if type(device_diarizarization) is str: |
|
device_diarizarization = torch.device(device_diarizarization) |
|
self.model_speaker_diarization = SpeakerDiarization(model_diarizarization, device_diarizarization) |
|
self.return_unique_speaker = return_unique_speaker |
|
super().__init__( |
|
model=model, |
|
feature_extractor=feature_extractor, |
|
tokenizer=tokenizer, |
|
device=device, |
|
torch_dtype=torch_dtype, |
|
**kwargs |
|
) |
|
|
|
def preprocess(self, inputs, chunk_length_s=0, stride_length_s=None): |
|
if isinstance(inputs, str): |
|
if inputs.startswith("http://") or inputs.startswith("https://"): |
|
|
|
|
|
inputs = requests.get(inputs).content |
|
else: |
|
with open(inputs, "rb") as f: |
|
inputs = f.read() |
|
|
|
if isinstance(inputs, bytes): |
|
inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate) |
|
|
|
stride = None |
|
extra = {} |
|
if isinstance(inputs, dict): |
|
stride = inputs.pop("stride", None) |
|
|
|
|
|
if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)): |
|
raise ValueError( |
|
"When passing a dictionary to AutomaticSpeechRecognitionPipeline, the dict needs to contain a " |
|
'"raw" key containing the numpy array representing the audio and a "sampling_rate" key, ' |
|
"containing the sampling_rate associated with that array" |
|
) |
|
|
|
_inputs = inputs.pop("raw", None) |
|
if _inputs is None: |
|
|
|
inputs.pop("path", None) |
|
_inputs = inputs.pop("array", None) |
|
in_sampling_rate = inputs.pop("sampling_rate") |
|
extra = inputs |
|
inputs = _inputs |
|
if in_sampling_rate != self.feature_extractor.sampling_rate: |
|
if is_torchaudio_available(): |
|
from torchaudio import functional as F |
|
else: |
|
raise ImportError( |
|
"torchaudio is required to resample audio samples in AutomaticSpeechRecognitionPipeline. " |
|
"The torchaudio package can be installed through: `pip install torchaudio`." |
|
) |
|
|
|
inputs = F.resample( |
|
torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate |
|
).numpy() |
|
ratio = self.feature_extractor.sampling_rate / in_sampling_rate |
|
else: |
|
ratio = 1 |
|
if stride is not None: |
|
if stride[0] + stride[1] > inputs.shape[0]: |
|
raise ValueError("Stride is too large for input") |
|
|
|
|
|
|
|
|
|
|
|
stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio))) |
|
if not isinstance(inputs, np.ndarray): |
|
raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`") |
|
if len(inputs.shape) != 1: |
|
raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline") |
|
|
|
if chunk_length_s: |
|
if stride_length_s is None: |
|
stride_length_s = chunk_length_s / 6 |
|
|
|
if isinstance(stride_length_s, (int, float)): |
|
stride_length_s = [stride_length_s, stride_length_s] |
|
|
|
|
|
|
|
|
|
align_to = getattr(self.model.config, "inputs_to_logits_ratio", 1) |
|
chunk_len = int(round(chunk_length_s * self.feature_extractor.sampling_rate / align_to) * align_to) |
|
stride_left = int(round(stride_length_s[0] * self.feature_extractor.sampling_rate / align_to) * align_to) |
|
stride_right = int(round(stride_length_s[1] * self.feature_extractor.sampling_rate / align_to) * align_to) |
|
|
|
if chunk_len < stride_left + stride_right: |
|
raise ValueError("Chunk length must be superior to stride length") |
|
|
|
for item in chunk_iter( |
|
inputs, self.feature_extractor, chunk_len, stride_left, stride_right, self.torch_dtype |
|
): |
|
item["audio_array"] = inputs |
|
yield item |
|
else: |
|
if inputs.shape[0] > self.feature_extractor.n_samples: |
|
processed = self.feature_extractor( |
|
inputs, |
|
sampling_rate=self.feature_extractor.sampling_rate, |
|
truncation=False, |
|
padding="longest", |
|
return_tensors="pt", |
|
) |
|
else: |
|
processed = self.feature_extractor( |
|
inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt" |
|
) |
|
|
|
if self.torch_dtype is not None: |
|
processed = processed.to(dtype=self.torch_dtype) |
|
if stride is not None: |
|
processed["stride"] = stride |
|
yield {"is_last": True, "audio_array": inputs, **processed, **extra} |
|
|
|
def _forward(self, model_inputs, **generate_kwargs): |
|
attention_mask = model_inputs.pop("attention_mask", None) |
|
stride = model_inputs.pop("stride", None) |
|
is_last = model_inputs.pop("is_last") |
|
audio_array = model_inputs.pop("audio_array") |
|
encoder = self.model.get_encoder() |
|
|
|
|
|
if "input_features" in model_inputs: |
|
inputs = model_inputs.pop("input_features") |
|
elif "input_values" in model_inputs: |
|
inputs = model_inputs.pop("input_values") |
|
else: |
|
raise ValueError( |
|
"Seq2Seq speech recognition model requires either a " |
|
f"`input_features` or `input_values` key, but only has {model_inputs.keys()}" |
|
) |
|
|
|
|
|
generate_kwargs["return_timestamps"] = True |
|
if inputs.shape[-1] > self.feature_extractor.nb_max_frames: |
|
generate_kwargs["input_features"] = inputs |
|
else: |
|
generate_kwargs["encoder_outputs"] = encoder(inputs, attention_mask=attention_mask) |
|
|
|
tokens = self.model.generate(attention_mask=attention_mask, **generate_kwargs) |
|
|
|
out = {"tokens": tokens} |
|
if self.type == "seq2seq_whisper": |
|
if stride is not None: |
|
out["stride"] = stride |
|
|
|
|
|
extra = model_inputs |
|
return {"is_last": is_last, "audio_array": audio_array, **out, **extra} |
|
|
|
def postprocess(self, |
|
model_outputs, |
|
decoder_kwargs: Optional[Dict] = None, |
|
return_language=None, |
|
*args, |
|
**kwargs): |
|
assert len(model_outputs) > 0 |
|
audio_array = list(model_outputs)[0]["audio_array"] |
|
sd = self.model_speaker_diarization(audio_array, sampling_rate=self.feature_extractor.sampling_rate) |
|
timelines = sd.get_timeline() |
|
outputs = super().postprocess( |
|
model_outputs=model_outputs, |
|
decoder_kwargs=decoder_kwargs, |
|
return_timestamps=True, |
|
return_language=return_language |
|
) |
|
pointer_ts = 0 |
|
pointer_chunk = 0 |
|
new_chunks = [] |
|
while True: |
|
if pointer_ts == len(timelines): |
|
ts = timelines[-1] |
|
for chunk in outputs["chunks"][pointer_chunk:]: |
|
chunk["speaker"] = sd.get_labels(ts) |
|
new_chunks.append(chunk) |
|
break |
|
if pointer_chunk == len(outputs["chunks"]): |
|
break |
|
ts = timelines[pointer_ts] |
|
|
|
chunk = outputs["chunks"][pointer_chunk] |
|
if "speaker" not in chunk: |
|
chunk["speaker"] = [] |
|
|
|
start, end = chunk["timestamp"] |
|
if ts.end <= start: |
|
pointer_ts += 1 |
|
elif end <= ts.start: |
|
if len(chunk["speaker"]) == 0: |
|
chunk["speaker"] += list(sd.get_labels(ts)) |
|
new_chunks.append(chunk) |
|
pointer_chunk += 1 |
|
else: |
|
chunk["speaker"] += list(sd.get_labels(ts)) |
|
if ts.end >= end: |
|
new_chunks.append(chunk) |
|
pointer_chunk += 1 |
|
else: |
|
pointer_ts += 1 |
|
for i in new_chunks: |
|
if "speaker" in i: |
|
if self.return_unique_speaker: |
|
i["speaker"] = [i["speaker"][0]] |
|
else: |
|
i["speaker"] = list(set(i["speaker"])) |
|
else: |
|
i["speaker"] = [] |
|
outputs["chunks"] = new_chunks |
|
outputs["text"] = "".join([c["text"] for c in outputs["chunks"]]) |
|
outputs["speakers"] = sd.labels() |
|
outputs.pop("audio_array") |
|
for s in outputs["speakers"]: |
|
outputs[f"text/{s}"] = "".join([c["text"] for c in outputs["chunks"] if s in c["speaker"]]) |
|
outputs[f"chunks/{s}"] = [c for c in outputs["chunks"] if s in c["speaker"]] |
|
return outputs |
|
|
|
|