File size: 15,039 Bytes
ecf7655 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
from typing import Union, Literal
from tqdm import tqdm
import numpy as np
import os, csv
from sentence_transformers.cross_encoder.evaluation import CrossEncoderNanoBEIREvaluator, CrossEncoderRerankingEvaluator
from sentence_transformers.util import is_datasets_available
from gliclass import ZeroShotClassificationPipeline, ZeroShotClassificationWithLabelsChunkingPipeline
import logging
logger = logging.getLogger(__name__)
DatasetNameType = Literal[
"climatefever",
"dbpedia",
"fever",
"fiqa2018",
"hotpotqa",
"msmarco",
"nfcorpus",
"nq",
"quoraretrieval",
"scidocs",
"arguana",
"scifact",
"touche2020",
]
dataset_name_to_id = {
"climatefever": "sentence-transformers/NanoClimateFEVER-bm25",
"dbpedia": "sentence-transformers/NanoDBPedia-bm25",
"fever": "sentence-transformers/NanoFEVER-bm25",
"fiqa2018": "sentence-transformers/NanoFiQA2018-bm25",
"hotpotqa": "sentence-transformers/NanoHotpotQA-bm25",
"msmarco": "sentence-transformers/NanoMSMARCO-bm25",
"nfcorpus": "sentence-transformers/NanoNFCorpus-bm25",
"nq": "sentence-transformers/NanoNQ-bm25",
"quoraretrieval": "sentence-transformers/NanoQuoraRetrieval-bm25",
"scidocs": "sentence-transformers/NanoSCIDOCS-bm25",
"arguana": "sentence-transformers/NanoArguAna-bm25",
"scifact": "sentence-transformers/NanoSciFact-bm25",
"touche2020": "sentence-transformers/NanoTouche2020-bm25",
}
dataset_name_to_human_readable = {
"climatefever": "ClimateFEVER",
"dbpedia": "DBPedia",
"fever": "FEVER",
"fiqa2018": "FiQA2018",
"hotpotqa": "HotpotQA",
"msmarco": "MSMARCO",
"nfcorpus": "NFCorpus",
"nq": "NQ",
"quoraretrieval": "QuoraRetrieval",
"scidocs": "SCIDOCS",
"arguana": "ArguAna",
"scifact": "SciFact",
"touche2020": "Touche2020",
}
class GLiClassRerankingEvaluator(CrossEncoderRerankingEvaluator):
def __call__(
self, model: Union[ZeroShotClassificationPipeline|ZeroShotClassificationWithLabelsChunkingPipeline], output_path: str = None, epoch: int = -1, steps: int = -1, labels_chunk_size: int = -1
) -> dict[str, float]:
if epoch != -1:
if steps == -1:
out_txt = f" after epoch {epoch}"
else:
out_txt = f" in epoch {epoch} after {steps} steps"
else:
out_txt = ""
logger.info(f"GLiClassRerankingEvaluator: Evaluating the model on the {self.name} dataset{out_txt}:")
base_mrr_scores = []
base_ndcg_scores = []
base_ap_scores = []
all_mrr_scores = []
all_ndcg_scores = []
all_ap_scores = []
num_queries = 0
num_positives = []
num_negatives = []
for instance in tqdm(self.samples, desc="Evaluating samples", disable=not self.show_progress_bar, leave=False):
if "query" not in instance:
raise ValueError("GLiClassRerankingEvaluator requires a 'query' key in each sample.")
if "positive" not in instance:
raise ValueError("GLiClassRerankingEvaluator requires a 'positive' key in each sample.")
if ("negative" in instance and "documents" in instance) or (
"negative" not in instance and "documents" not in instance
):
raise ValueError(
"GLiClassRerankingEvaluator requires exactly one of 'negative' and 'documents' in each sample."
)
query = instance["query"]
positive = instance["positive"]
if isinstance(positive, str):
positive = [positive]
negative = instance.get("negative", None)
documents = instance.get("documents", None)
if documents:
base_is_relevant = [int(sample in positive) for sample in documents]
if sum(base_is_relevant) == 0:
base_mrr, base_ndcg, base_ap = 0, 0, 0
else:
# If not all positives are in documents, we need to add them at the end
base_is_relevant += [1] * (len(positive) - sum(base_is_relevant))
base_pred_scores = np.array(range(len(base_is_relevant), 0, -1))
base_mrr, base_ndcg, base_ap = self.compute_metrics(base_is_relevant, base_pred_scores)
base_mrr_scores.append(base_mrr)
base_ndcg_scores.append(base_ndcg)
base_ap_scores.append(base_ap)
if self.always_rerank_positives:
docs = positive + [doc for doc in documents if doc not in positive]
is_relevant = [1] * len(positive) + [0] * (len(docs) - len(positive))
else:
docs = documents
is_relevant = [int(sample in positive) for sample in documents]
else:
docs = positive + negative
is_relevant = [1] * len(positive) + [0] * len(negative)
num_queries += 1
num_positives.append(len(positive))
num_negatives.append(len(is_relevant) - sum(is_relevant))
if sum(is_relevant) == 0:
all_mrr_scores.append(0)
all_ndcg_scores.append(0)
all_ap_scores.append(0)
continue
if labels_chunk_size>0 and isinstance(model, ZeroShotClassificationWithLabelsChunkingPipeline):
gliclass_outputs = model(query, docs, threshold=0.0, labels_chunk_size=labels_chunk_size)
else:
gliclass_outputs = model(query, docs, threshold=0.0)
pred_scores = np.array([item['score'] for item in gliclass_outputs[0]])
# Add the ignored positives at the end
if num_ignored_positives := len(is_relevant) - len(pred_scores):
pred_scores = np.concatenate([pred_scores, np.zeros(num_ignored_positives)])
mrr, ndcg, ap = self.compute_metrics(is_relevant, pred_scores)
all_mrr_scores.append(mrr)
all_ndcg_scores.append(ndcg)
all_ap_scores.append(ap)
mean_mrr = np.mean(all_mrr_scores)
mean_ndcg = np.mean(all_ndcg_scores)
mean_ap = np.mean(all_ap_scores)
metrics = {
"map": mean_ap,
f"mrr@{self.at_k}": mean_mrr,
f"ndcg@{self.at_k}": mean_ndcg,
}
logger.info(
f"Queries: {num_queries}\t"
f"Positives: Min {np.min(num_positives):.1f}, Mean {np.mean(num_positives):.1f}, Max {np.max(num_positives):.1f}\t"
f"Negatives: Min {np.min(num_negatives):.1f}, Mean {np.mean(num_negatives):.1f}, Max {np.max(num_negatives):.1f}"
)
if documents:
mean_base_mrr = np.mean(base_mrr_scores)
mean_base_ndcg = np.mean(base_ndcg_scores)
mean_base_ap = np.mean(base_ap_scores)
base_metrics = {
"base_map": mean_base_ap,
f"base_mrr@{self.at_k}": mean_base_mrr,
f"base_ndcg@{self.at_k}": mean_base_ndcg,
}
logger.info(f"{' ' * len(str(self.at_k))} Base -> Reranked")
logger.info(f"MAP:{' ' * len(str(self.at_k))} {mean_base_ap * 100:.2f} -> {mean_ap * 100:.2f}")
logger.info(f"MRR@{self.at_k}: {mean_base_mrr * 100:.2f} -> {mean_mrr * 100:.2f}")
logger.info(f"NDCG@{self.at_k}: {mean_base_ndcg * 100:.2f} -> {mean_ndcg * 100:.2f}")
model_card_metrics = {
"map": f"{mean_ap:.4f} ({mean_ap - mean_base_ap:+.4f})",
f"mrr@{self.at_k}": f"{mean_mrr:.4f} ({mean_mrr - mean_base_mrr:+.4f})",
f"ndcg@{self.at_k}": f"{mean_ndcg:.4f} ({mean_ndcg - mean_base_ndcg:+.4f})",
}
model_card_metrics = self.prefix_name_to_metrics(model_card_metrics, self.name)
metrics.update(base_metrics)
metrics = self.prefix_name_to_metrics(metrics, self.name)
else:
logger.info(f"MAP:{' ' * len(str(self.at_k))} {mean_ap * 100:.2f}")
logger.info(f"MRR@{self.at_k}: {mean_mrr * 100:.2f}")
logger.info(f"NDCG@{self.at_k}: {mean_ndcg * 100:.2f}")
metrics = self.prefix_name_to_metrics(metrics, self.name)
self.store_metrics_in_model_card_data(model, metrics, epoch, steps)
if output_path is not None and self.write_csv:
csv_path = os.path.join(output_path, self.csv_file)
output_file_exists = os.path.isfile(csv_path)
with open(csv_path, mode="a" if output_file_exists else "w", encoding="utf-8") as f:
writer = csv.writer(f)
if not output_file_exists:
writer.writerow(self.csv_headers)
writer.writerow([epoch, steps, mean_ap, mean_mrr, mean_ndcg])
return metrics
class GLiClassNanoBEIREvaluator(CrossEncoderNanoBEIREvaluator):
def _load_dataset(self, dataset_name, **ir_evaluator_kwargs) -> CrossEncoderRerankingEvaluator:
if not is_datasets_available():
raise ValueError(
"datasets is not available. Please install it to use the CrossEncoderNanoBEIREvaluator via `pip install datasets`."
)
from datasets import load_dataset
dataset_path = dataset_name_to_id[dataset_name.lower()]
corpus = load_dataset(dataset_path, "corpus", split="train")
corpus_mapping = dict(zip(corpus["_id"], corpus["text"]))
queries = load_dataset(dataset_path, "queries", split="train")
query_mapping = dict(zip(queries["_id"], queries["text"]))
relevance = load_dataset(dataset_path, "relevance", split="train")
def mapper(sample, corpus_mapping: dict[str, str], query_mapping: dict[str, str], rerank_k: int):
query = query_mapping[sample["query-id"]]
positives = [corpus_mapping[positive_id] for positive_id in sample["positive-corpus-ids"]]
documents = [corpus_mapping[document_id] for document_id in sample["bm25-ranked-ids"][:rerank_k]]
return {
"query": query,
"positive": positives,
"documents": documents,
}
relevance = relevance.map(
mapper,
fn_kwargs={"corpus_mapping": corpus_mapping, "query_mapping": query_mapping, "rerank_k": self.rerank_k},
)
human_readable_name = self._get_human_readable_name(dataset_name)
return GLiClassRerankingEvaluator(
samples=list(relevance),
name=human_readable_name,
**ir_evaluator_kwargs,
)
def __call__(
self, model: Union[ZeroShotClassificationPipeline|ZeroShotClassificationWithLabelsChunkingPipeline], output_path: str = None, epoch: int = -1, steps: int = -1, *args, **kwargs
) -> dict[str, float]:
per_metric_results = {}
per_dataset_results = {}
if epoch != -1:
if steps == -1:
out_txt = f" after epoch {epoch}"
else:
out_txt = f" in epoch {epoch} after {steps} steps"
else:
out_txt = ""
logger.info(f"NanoBEIR Evaluation of the model on {self.dataset_names} dataset{out_txt}:")
for evaluator in tqdm(self.evaluators, desc="Evaluating datasets", disable=not self.show_progress_bar):
logger.info(f"Evaluating {evaluator.name}")
evaluation = evaluator(model, output_path, epoch, steps)
for k in evaluation:
dataset, _rerank_k, metric = k.split("_", maxsplit=2)
if metric not in per_metric_results:
per_metric_results[metric] = []
per_dataset_results[f"{dataset}_R{self.rerank_k}_{metric}"] = evaluation[k]
per_metric_results[metric].append(evaluation[k])
logger.info("")
agg_results = {}
for metric in per_metric_results:
agg_results[metric] = self.aggregate_fn(per_metric_results[metric])
if output_path is not None and self.write_csv:
csv_path = os.path.join(output_path, self.csv_file)
if not os.path.isfile(csv_path):
fOut = open(csv_path, mode="w", encoding="utf-8")
fOut.write(",".join(self.csv_headers))
fOut.write("\n")
else:
fOut = open(csv_path, mode="a", encoding="utf-8")
output_data = [
epoch,
steps,
agg_results["map"],
agg_results[f"mrr@{self.at_k}"],
agg_results[f"ndcg@{self.at_k}"],
]
fOut.write(",".join(map(str, output_data)))
fOut.write("\n")
fOut.close()
logger.info("CrossEncoderNanoBEIREvaluator: Aggregated Results:")
logger.info(f"{' ' * len(str(self.at_k))} Base -> Reranked")
logger.info(
f"MAP:{' ' * len(str(self.at_k))} {agg_results['base_map'] * 100:.2f} -> {agg_results['map'] * 100:.2f}"
)
logger.info(
f"MRR@{self.at_k}: {agg_results[f'base_mrr@{self.at_k}'] * 100:.2f} -> {agg_results[f'mrr@{self.at_k}'] * 100:.2f}"
)
logger.info(
f"NDCG@{self.at_k}: {agg_results[f'base_ndcg@{self.at_k}'] * 100:.2f} -> {agg_results[f'ndcg@{self.at_k}'] * 100:.2f}"
)
model_card_metrics = {
"map": f"{agg_results['map']:.4f} ({agg_results['map'] - agg_results['base_map']:+.4f})",
f"mrr@{self.at_k}": f"{agg_results[f'mrr@{self.at_k}']:.4f} ({agg_results[f'mrr@{self.at_k}'] - agg_results[f'base_mrr@{self.at_k}']:+.4f})",
f"ndcg@{self.at_k}": f"{agg_results[f'ndcg@{self.at_k}']:.4f} ({agg_results[f'ndcg@{self.at_k}'] - agg_results[f'base_ndcg@{self.at_k}']:+.4f})",
}
agg_results = self.prefix_name_to_metrics(agg_results, self.name)
per_dataset_results.update(agg_results)
return per_dataset_results
if __name__ == '__main__':
from gliclass import GLiClassModel, ZeroShotClassificationPipeline, ZeroShotClassificationWithLabelsChunkingPipeline
from transformers import AutoTokenizer
chunk_pipeline = True
model_path = "knowledgator/gliclass-modern-base-v2.0"
model = GLiClassModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, add_prefix_space=True)
if not chunk_pipeline:
pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0', max_length=8192, progress_bar=False)
else:
pipeline = ZeroShotClassificationWithLabelsChunkingPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0', max_length=8192, progress_bar=False)
dataset_names = ["msmarco", "nfcorpus", "nq"]
evaluator = GLiClassNanoBEIREvaluator(dataset_names)
results = evaluator(pipeline)
print(results) |