--- license: apache-2.0 datasets: - MoritzLaurer/synthetic_zeroshot_mixtral_v0.1 - knowledgator/gliclass-v1.0 - fancyzhx/amazon_polarity - cnmoro/QuestionClassification - Arsive/toxicity_classification_jigsaw - shishir-dwi/News-Article-Categorization_IAB - SetFit/qnli - nyu-mll/multi_nli - SetFit/student-question-categories - SetFit/tweet_sentiment_extraction - SetFit/hate_speech18 - saattrupdan/doc-nli language: - en - fr - ge metrics: - f1 pipeline_tag: zero-shot-classification tags: - text classification - zero-shot - small language models - RAG - sentiment analysis --- # ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines. The model was trained on synthetic and licensed data that allow commercial use and can be used in commercial applications. This version of the model uses a layer-wise selection of features that enables a better understanding of different levels of language. The backbone model is [ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large), which effectively processes long sequences. ### How to use: First of all, you need to install GLiClass library: ```bash pip install gliclass pip install -U transformers>=4.48.0 ``` Than you need to initialize a model and a pipeline: ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-modern-large-v2.0-init") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-modern-large-v2.0-init") pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ``` ### Benchmarks: Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting. | Model | IMDB | AG_NEWS | Emotions | |-----------------------------|------|---------|----------| | [gliclass-modern-large-v2.0-init (399 M)](knowledgator/gliclass-modern-large-v2.0-init) | 0.9137 | 0.7357 | 0.4140 | | [gliclass-modern-base-v2.0-init (151 M)](knowledgator/gliclass-modern-base-v2.0-init) | 0.8264 | 0.6637 | 0.2985 | | [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 | | [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 | | [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 | | [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 | | [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 | | [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 | | SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 | Below you can find a comparison with other GLiClass models: | Dataset | gliclass-small-v1.0-lw | gliclass-base-v1.0-lw | gliclass-large-v1.0-lw | gliclass-small-v1.0 | gliclass-base-v1.0 | gliclass-large-v1.0 | gliclass-modern-base-v2.0-init | gliclass-modern-large-v2.0-init | |----------------------|-----------------------|-----------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|---------------------| | CR | 0.8886 | 0.9097 | 0.9226 | 0.8824 | 0.8942 | 0.9219 | 0.9041 | 0.8980 | | sst2 | 0.8392 | 0.8987 | 0.9247 | 0.8518 | 0.8979 | 0.9269 | 0.9011 | 0.9434 | | sst5 | 0.2865 | 0.3779 | 0.2891 | 0.2424 | 0.2789 | 0.3900 | 0.1972 | 0.1123 | | 20_news_groups | 0.4572 | 0.3953 | 0.4083 | 0.3366 | 0.3576 | 0.3863 | 0.2448 | 0.2792 | | spam | 0.5118 | 0.5126 | 0.3642 | 0.4089 | 0.4938 | 0.3661 | 0.5074 | 0.6364 | | rotten_tomatoes | 0.8015 | 0.8429 | 0.8807 | 0.7987 | 0.8508 | 0.8808 | 0.6630 | 0.5928 | | financial_phrasebank | 0.8665 | 0.8880 | 0.9044 | 0.8901 | 0.8955 | 0.8735 | 0.2537 | 0.2562 | | imdb | 0.9048 | 0.9351 | 0.9429 | 0.8982 | 0.9238 | 0.9333 | 0.8255 | 0.9137 | | ag_news | 0.7252 | 0.6985 | 0.7559 | 0.7242 | 0.6848 | 0.7503 | 0.6050 | 0.6933 | | dair_emotion | 0.4012 | 0.3516 | 0.3951 | 0.3450 | 0.2357 | 0.4013 | 0.2474 | 0.3746 | | capsotu | 0.3794 | 0.4643 | 0.4749 | 0.3432 | 0.4375 | 0.4644 | 0.2929 | 0.2919 | | **Average:** | 0.5732 | 0.6183 | 0.6165 | 0.5401 | 0.5571 | 0.6078 | 0.5129 | 0.5447 |