Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
pipeline_tag: text2text-generation
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
**flan-t5-small-for-classification**
|
| 9 |
+
|
| 10 |
+
<img src="https://github.com/Knowledgator/unlimited_classifier/raw/main/images/tree.jpeg" style="display: block; margin: auto;" height="720" width="720">
|
| 11 |
+
|
| 12 |
+
This is an additional fine-tuned [flan-t5-small](https://huggingface.co/google/flan-t5-small) model on many classification datasets.
|
| 13 |
+
|
| 14 |
+
The model supports prompt-tuned classification and is suitable for complex classification settings such as resumes classification by criteria.
|
| 15 |
+
|
| 16 |
+
You can use the model simply generating the text class name or using our [unlimited-classifier](https://github.com/Knowledgator/unlimited_classifier).
|
| 17 |
+
|
| 18 |
+
The library allows to set constraints on generation and classify text into millions of classes.
|
| 19 |
+
|
| 20 |
+
### How to use:
|
| 21 |
+
|
| 22 |
+
To use it with transformers library take a look into the following code snippet:
|
| 23 |
+
```python
|
| 24 |
+
# pip install accelerate
|
| 25 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
| 26 |
+
|
| 27 |
+
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-large")
|
| 28 |
+
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large", device_map="auto")
|
| 29 |
+
|
| 30 |
+
input_text = "Define sentiment of the following text: I love to travel and someday I will see the world."
|
| 31 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cuda")
|
| 32 |
+
|
| 33 |
+
outputs = model.generate(input_ids)
|
| 34 |
+
print(tokenizer.decode(outputs[0]))
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
**Using unlimited-classifier**
|
| 38 |
+
|
| 39 |
+
```python
|
| 40 |
+
# pip install unlimited-classifier
|
| 41 |
+
|
| 42 |
+
from unlimited_classifier import TextClassifier
|
| 43 |
+
|
| 44 |
+
classifier = TextClassifier(
|
| 45 |
+
labels=[
|
| 46 |
+
'positive',
|
| 47 |
+
'negative',
|
| 48 |
+
'neutral'
|
| 49 |
+
],
|
| 50 |
+
model='knowledgator/flan-t5-small-for-classification',
|
| 51 |
+
tokenizer='knowledgator/flan-t5-small-for-classification',
|
| 52 |
+
)
|
| 53 |
+
output = classifier.invoke(input_text)
|
| 54 |
+
print(output)
|
| 55 |
+
```
|