Sebastian Semeniuc
commited on
Commit
·
fae0531
1
Parent(s):
4cc0dca
feat: add sdxl with controlnet
Browse files- handler.py +41 -32
- request.json +0 -0
- requirements.txt +1 -1
handler.py
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
-
from typing import
|
2 |
import base64
|
3 |
from PIL import Image
|
4 |
from io import BytesIO
|
5 |
-
from diffusers import
|
6 |
import torch
|
7 |
|
8 |
|
@@ -15,7 +15,16 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
15 |
if device.type != 'cuda':
|
16 |
raise ValueError("need to run on GPU")
|
17 |
# set mixed precision dtype
|
18 |
-
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# controlnet mapping for controlnet id and control hinter
|
21 |
CONTROLNET_MAPPING = {
|
@@ -58,14 +67,16 @@ class EndpointHandler():
|
|
58 |
def __init__(self, path=""):
|
59 |
# define default controlnet id and load controlnet
|
60 |
self.control_type = "normal"
|
61 |
-
self.controlnet = ControlNetModel.from_pretrained(
|
62 |
-
|
63 |
-
|
|
|
|
|
64 |
self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
|
65 |
-
self.pipe =
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
# makes inference much faster
|
70 |
# self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
71 |
# Define Generator with seed
|
@@ -78,55 +89,53 @@ class EndpointHandler():
|
|
78 |
"""
|
79 |
prompt = data.pop("inputs", None)
|
80 |
image = data.pop("image", None)
|
81 |
-
num_of_images = data.pop("
|
82 |
controlnet_type = data.pop("controlnet_type", None)
|
83 |
-
|
84 |
# Check if neither prompt nor image is provided
|
85 |
if prompt is None and image is None:
|
86 |
return {"error": "Please provide a prompt and base64 encoded image."}
|
87 |
-
|
88 |
if num_of_images is None:
|
89 |
num_of_images = 1
|
90 |
-
|
91 |
# Check if a new controlnet is provided
|
92 |
if controlnet_type is not None and controlnet_type != self.control_type:
|
93 |
-
print(
|
|
|
94 |
self.control_type = controlnet_type
|
95 |
-
self.controlnet = ControlNetModel.from_pretrained(
|
96 |
torch_dtype=dtype).to(device)
|
97 |
self.pipe.controlnet = self.controlnet
|
98 |
-
|
99 |
-
|
100 |
# hyperparamters
|
101 |
num_inference_steps = data.pop("num_inference_steps", 30)
|
102 |
guidance_scale = data.pop("guidance_scale", 7.5)
|
103 |
negative_prompt = data.pop("negative_prompt", None)
|
104 |
height = data.pop("height", None)
|
105 |
width = data.pop("width", None)
|
106 |
-
controlnet_conditioning_scale = data.pop(
|
107 |
-
|
|
|
108 |
# process image
|
109 |
image = self.decode_base64_image(image)
|
110 |
-
control_image =
|
111 |
-
|
|
|
112 |
# run inference pipeline
|
113 |
-
|
114 |
-
prompt=prompt,
|
115 |
negative_prompt=negative_prompt,
|
116 |
image=control_image,
|
117 |
-
num_inference_steps=num_inference_steps,
|
118 |
guidance_scale=guidance_scale,
|
119 |
num_images_per_prompt=num_of_images,
|
120 |
-
height=height,
|
121 |
-
width=width,
|
122 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
123 |
generator=self.generator
|
124 |
-
)
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
# return the list of generated images
|
128 |
-
return out.images
|
129 |
-
|
130 |
# helper to decode input image
|
131 |
def decode_base64_image(self, image_string):
|
132 |
base64_image = base64.b64decode(image_string)
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
import base64
|
3 |
from PIL import Image
|
4 |
from io import BytesIO
|
5 |
+
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL, UniPCMultistepScheduler
|
6 |
import torch
|
7 |
|
8 |
|
|
|
15 |
if device.type != 'cuda':
|
16 |
raise ValueError("need to run on GPU")
|
17 |
# set mixed precision dtype
|
18 |
+
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[
|
19 |
+
0] == 8 else torch.float16
|
20 |
+
|
21 |
+
# for the moment, support only canny edge
|
22 |
+
SDXLCONTROLNET_MAPPING = {
|
23 |
+
"canny_edge": {
|
24 |
+
"model_id": "diffusers/controlnet-canny-sdxl-1.0",
|
25 |
+
"hinter": controlnet_hinter.hint_canny
|
26 |
+
}
|
27 |
+
}
|
28 |
|
29 |
# controlnet mapping for controlnet id and control hinter
|
30 |
CONTROLNET_MAPPING = {
|
|
|
67 |
def __init__(self, path=""):
|
68 |
# define default controlnet id and load controlnet
|
69 |
self.control_type = "normal"
|
70 |
+
self.controlnet = ControlNetModel.from_pretrained(
|
71 |
+
SDXLCONTROLNET_MAPPING[self.control_type]["model_id"], torch_dtype=dtype).to(device)
|
72 |
+
|
73 |
+
# Load StableDiffusionControlNetPipeline
|
74 |
+
self.sdxl_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
75 |
self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
|
76 |
+
self.pipe = StableDiffusionXLControlNetPipeline.from_pretrained(self.sdxl_id,
|
77 |
+
controlnet=self.controlnet,
|
78 |
+
torch_dtype=dtype,
|
79 |
+
safety_checker=None).to(device)
|
80 |
# makes inference much faster
|
81 |
# self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
|
82 |
# Define Generator with seed
|
|
|
89 |
"""
|
90 |
prompt = data.pop("inputs", None)
|
91 |
image = data.pop("image", None)
|
92 |
+
num_of_images = data.pop("num_of_images", None)
|
93 |
controlnet_type = data.pop("controlnet_type", None)
|
94 |
+
|
95 |
# Check if neither prompt nor image is provided
|
96 |
if prompt is None and image is None:
|
97 |
return {"error": "Please provide a prompt and base64 encoded image."}
|
98 |
+
|
99 |
if num_of_images is None:
|
100 |
num_of_images = 1
|
101 |
+
|
102 |
# Check if a new controlnet is provided
|
103 |
if controlnet_type is not None and controlnet_type != self.control_type:
|
104 |
+
print(
|
105 |
+
f"changing controlnet from {self.control_type} to {controlnet_type} using {SDXLCONTROLNET_MAPPING[controlnet_type]['model_id']} model")
|
106 |
self.control_type = controlnet_type
|
107 |
+
self.controlnet = ControlNetModel.from_pretrained(SDXLCONTROLNET_MAPPING[self.control_type]["model_id"],
|
108 |
torch_dtype=dtype).to(device)
|
109 |
self.pipe.controlnet = self.controlnet
|
110 |
+
|
|
|
111 |
# hyperparamters
|
112 |
num_inference_steps = data.pop("num_inference_steps", 30)
|
113 |
guidance_scale = data.pop("guidance_scale", 7.5)
|
114 |
negative_prompt = data.pop("negative_prompt", None)
|
115 |
height = data.pop("height", None)
|
116 |
width = data.pop("width", None)
|
117 |
+
controlnet_conditioning_scale = data.pop(
|
118 |
+
"controlnet_conditioning_scale", 1.0)
|
119 |
+
|
120 |
# process image
|
121 |
image = self.decode_base64_image(image)
|
122 |
+
control_image = SDXLCONTROLNET_MAPPING[self.control_type]["hinter"](
|
123 |
+
image, width=1024, height=1024)
|
124 |
+
|
125 |
# run inference pipeline
|
126 |
+
images = self.pipe(
|
127 |
+
prompt=prompt,
|
128 |
negative_prompt=negative_prompt,
|
129 |
image=control_image,
|
130 |
+
num_inference_steps=num_inference_steps,
|
131 |
guidance_scale=guidance_scale,
|
132 |
num_images_per_prompt=num_of_images,
|
|
|
|
|
133 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
134 |
generator=self.generator
|
135 |
+
).images[0]
|
136 |
+
|
137 |
+
return images
|
138 |
|
|
|
|
|
|
|
|
|
139 |
# helper to decode input image
|
140 |
def decode_base64_image(self, image_string):
|
141 |
base64_image = base64.b64decode(image_string)
|
request.json
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
diffusers==0.
|
2 |
safetensors
|
3 |
opencv-python
|
4 |
controlnet_hinter==0.0.5
|
|
|
1 |
+
diffusers==0.20.0
|
2 |
safetensors
|
3 |
opencv-python
|
4 |
controlnet_hinter==0.0.5
|