File size: 1,352 Bytes
fd055c1
 
 
 
5ab5deb
 
 
a659e89
 
fd055c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a659e89
fd055c1
a659e89
fd055c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a659e89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
base_model: distilbert-base-uncased
datasets:
- arrow
license: apache-2.0
tags:
- generated_from_trainer
- sentiment-classification
- LLM
model-index:
- name: cls_distilbert_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# cls_distilbert_model

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the arrow dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.4205
- eval_accuracy: 0.8218
- eval_f1: 0.8203
- eval_precision: 0.8326
- eval_recall: 0.8218
- eval_runtime: 1.4638
- eval_samples_per_second: 728.218
- eval_steps_per_second: 45.77
- epoch: 1.0
- step: 534

## Model description 

Model is used to classify the sentiment  POSITIVE or  NEGATIVE for given sample inout textx


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.0