ppo-LunarLander-v2 / config.json
kitsonr's picture
deep RL course lunar lander PPO
e7e8542
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7957eb9e2560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7957eb9e25f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7957eb9e2680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7957eb9e2710>", "_build": "<function ActorCriticPolicy._build at 0x7957eb9e27a0>", "forward": "<function ActorCriticPolicy.forward at 0x7957eb9e2830>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7957eb9e28c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7957eb9e2950>", "_predict": "<function ActorCriticPolicy._predict at 0x7957eb9e29e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7957eb9e2a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7957eb9e2b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7957eb9e2b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7957ebb82a80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701990130985769165, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIPqTb7DM6M/GnQMvxFcjL48hnK+2g/9vQAAAAAAAAAA2rupvVLAkrk7C2K6fBwKtTpfRDrRcYM5AACAPwAAgD+AzGC9e96OuuJlgjoVQ3s1O9Zwufpml7kAAIA/AACAP/M7g732nGa6taKOOWWirzQpyFu6C6amuAAAgD8AAIA/AM0hPa7nobquusE3EUuKMRDv6rpGQNy2AACAPwAAgD8AKjK8rh2HuliXkjuf4es29QpHu01iqroAAIA/AACAP7MbIj2PTha6LmNZuxF/EDQnwWC7mDF/OgAAgD8AAIA/8KlNvn6gqz+FXCa/wXa3vpxRhr7aePK9AAAAAAAAAACzV3k9jyYXumq3sbv7tUa39xg3OmNw0DoAAIA/AACAPwDGKTwfbbq5lJi1OgNXHzYez8A6nsHTuQAAgD8AAIA/jSujvWfAwj6yTLs9Htwkvva6OD1OdYs8AAAAAAAAAAAARty8e/yXutPD6zpiVMI1oOIAO6lKCLoAAIA/AACAP818S7yPpg+6FFOouFobRLNpXL26rnTINwAAgD8AAIA/5pNTPZQK8z153Ae9pEWLvlGs4jvuAIU8AAAAAAAAAACz6Sc9SJuLuqAjcrpS5mu2gBrNOkAV2TUAAIA/AACAP/ryND7U38I+EdynvYYLdr6WKxA9slkhPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGK0Rgy/KySMAWyUTegDjAF0lEdAlDx0t/WlM3V9lChoBkdAcKG0wrUb1mgHTQYDaAhHQJQ/w6ZH/cZ1fZQoaAZHQGbWk4m1IAhoB03oA2gIR0CUQWVPN3W4dX2UKGgGR0BhKBR2r4nGaAdN6ANoCEdAlEGMKkVN6HV9lChoBkdAXcLd9Dx9X2gHTegDaAhHQJRKAGOdXkp1fZQoaAZHQGab9cB2fTVoB03oA2gIR0CUTWiD/VAidX2UKGgGR0BftnkHUtqYaAdN6ANoCEdAlFSTl90A93V9lChoBkdAXj3gm7aqTGgHTegDaAhHQJRdk/dIoVp1fZQoaAZHQGAn2Awwj+toB03oA2gIR0CUZKXFtKqXdX2UKGgGR0BggEs+V1OkaAdN6ANoCEdAlIJf1Hvtt3V9lChoBkdAYOCSlnAZbmgHTegDaAhHQJSEzhCMPz51fZQoaAZHQGY6GXPZ7HBoB03oA2gIR0CUi3LBsQ/YdX2UKGgGR0BiD+zY287IaAdN6ANoCEdAlI3/Uaya/nV9lChoBkdAY+m2VE/jbWgHTegDaAhHQJSOdBhQWN51fZQoaAZHQGBSnDaXa8JoB03oA2gIR0CUj5gQHzH0dX2UKGgGR0Bh61qpLmITaAdN6ANoCEdAlJGQJHAh0XV9lChoBkdAZLzBKtga32gHTegDaAhHQJSUB+hGpdd1fZQoaAZHQGHHnjZL7GhoB03oA2gIR0CUl0MPBi1BdX2UKGgGR0BkhHWDpTuOaAdN6ANoCEdAlJid/nW8RXV9lChoBkdAYm1tk4FRpGgHTegDaAhHQJSYuBmPHT91fZQoaAZHQEyRiT+vQnhoB00DAWgIR0CUmf9HMEA6dX2UKGgGR0BjUuvbGm1qaAdN6ANoCEdAlJ338jzI3nV9lChoBkdAYpouwosqa2gHTegDaAhHQJSgrQ3PzFx1fZQoaAZHQGNv7rcCYC1oB03oA2gIR0CUqIU7jkuIdX2UKGgGR0Bb3a+zt1IRaAdN6ANoCEdAlLC85fdAPnV9lChoBkdAZpzNpudf9mgHTegDaAhHQJS2mPn0TUR1fZQoaAZHQGMAZy2hIvtoB03oA2gIR0CU0a4p+c6OdX2UKGgGR0Bim3eDWbw0aAdN6ANoCEdAlNRLi2lVLnV9lChoBkdAcBYjgQ6IWWgHTcMDaAhHQJTeYVUMoc91fZQoaAZHQGOVxg7YChhoB03oA2gIR0CU3w4o7V8UdX2UKGgGR0BeEzhky1u0aAdN6ANoCEdAlN95cC5mRXV9lChoBkdAZd/qzJIUamgHTegDaAhHQJTi34N7SiN1fZQoaAZHQGHZVtGd7OVoB03oA2gIR0CU5XMPz4DcdX2UKGgGR0BkeMnRb8m8aAdN6ANoCEdAlOkSg9Net3V9lChoBkdAY8XD3M6ikGgHTegDaAhHQJTqpayKNyZ1fZQoaAZHQGF7HwgDA8BoB03oA2gIR0CU6sVDrqt6dX2UKGgGR0BnKhEDyOJdaAdN6ANoCEdAlOxdmthd+3V9lChoBkdANPUm+j/Mn2gHTSIBaAhHQJTvelj3Eht1fZQoaAZHQGQNm3nZCfJoB03oA2gIR0CU8VD+zdDZdX2UKGgGR0Binqt5le4TaAdN6ANoCEdAlPR3A6+36XV9lChoBkdASjVNDc/MXGgHS+9oCEdAlPcZBPbfxnV9lChoBkdAZQIEXcgyM2gHTegDaAhHQJT7izlcQiB1fZQoaAZHQGPpTTF2mpFoB03oA2gIR0CVA0OPeYUndX2UKGgGR0BipHpQk5ZKaAdN6ANoCEdAlQrhBRhttXV9lChoBkdASalO9FnZkGgHS+doCEdAlSUiHIp6QnV9lChoBkdAYfQpy6tknWgHTegDaAhHQJUlJRGc4HZ1fZQoaAZHQF3M1stTUAloB03oA2gIR0CVJ2Ap8WsSdX2UKGgGR0BeXAhB7eEaaAdN6ANoCEdAlS9BQaaTfXV9lChoBkdAZc8yckMTe2gHTegDaAhHQJUvr+qBErp1fZQoaAZHQGGiwFTvRZ5oB03oA2gIR0CVMrosZpBYdX2UKGgGR0BeJ+Tq0MPSaAdN6ANoCEdAlTUxXGOuJXV9lChoBkdAX5RFUhmoSGgHTegDaAhHQJU7mymhufp1fZQoaAZHQGLVNjTa0yBoB03oA2gIR0CVO8oKUmlZdX2UKGgGR0BmKpfa6BiDaAdN6ANoCEdAlT3p5E+gUXV9lChoBkdAZKobF0gbImgHTegDaAhHQJVBvdKujh11fZQoaAZHQEm9YMfA9FFoB00YAWgIR0CVQiydFvycdX2UKGgGR0BkVcTDfm9yaAdN6ANoCEdAlUNO+RHPNXV9lChoBkdAQqS5wwTM7mgHS+doCEdAlUS2VZ9uxnV9lChoBkdAZm//6wdKd2gHTegDaAhHQJVF4274BWB1fZQoaAZHQGIlpI+W4VhoB03oA2gIR0CVSDU3n6l+dX2UKGgGR0BN3DcVQAMlaAdNBgFoCEdAlUrIWk8A73V9lChoBkdAYHCIldC3PWgHTegDaAhHQJVL03eenQ91fZQoaAZHQHDcDpLVWjpoB02pAWgIR0CVVqwaR6njdX2UKGgGR0Bly/73wkPdaAdN6ANoCEdAlVm0uctoSXV9lChoBkdAXFPAk9lmOGgHTegDaAhHQJV22dJ8OTd1fZQoaAZHQGaKWUSqU/xoB03oA2gIR0CVdtzTnaFmdX2UKGgGR0BdNv9DQZ4waAdN6ANoCEdAlXli+De0onV9lChoBkdAYtTZElVtGmgHTegDaAhHQJWBr0Bfa6B1fZQoaAZHQGHkqdpZfUpoB03oA2gIR0CVhSmQbMoudX2UKGgGR0BeQPF3pwCKaAdN6ANoCEdAlYy0zKs+3nV9lChoBkdAYUQm+Cbtq2gHTegDaAhHQJWR/eJpFkR1fZQoaAZHQGA8wZOzpotoB03oA2gIR0CVkoTvRZ2ZdX2UKGgGR0BgJM5p8F6iaAdN6ANoCEdAlZPMRL9MsnV9lChoBkdAZUXZi/fwZ2gHTegDaAhHQJWVWp5u63B1fZQoaAZHQGWOKISDh99oB03oA2gIR0CVlrgH/tIDdX2UKGgGR0BeVXIU8FINaAdN6ANoCEdAlZjhRQ79ynV9lChoBkdAYk+hib2DhGgHTegDaAhHQJWca0CzTnd1fZQoaAZHQGYS83Mpw0hoB03oA2gIR0CVnb5ooNNKdX2UKGgGR0BxjoZ/CqIaaAdNRwFoCEdAlaC8pobn5nV9lChoBkdAM95uyeI2wWgHTQgBaAhHQJWnB5hScb11fZQoaAZHQGT4gP/aQFNoB03oA2gIR0CVqE02cawVdX2UKGgGR0BjHrRjSXt0aAdN6ANoCEdAlarfTkQwsXV9lChoBkdAZfRYgaFVUGgHTegDaAhHQJWy9MzuWrx1fZQoaAZHQGAklIEr5IpoB03oA2gIR0CVsvc7hegMdX2UKGgGR0Bh+sh7mdRSaAdN6ANoCEdAlcbDJ2dNFnV9lChoBkdAYS5DQZ4wAWgHTegDaAhHQJXQzAGjbi91fZQoaAZHQF5+e9SMtK9oB03oA2gIR0CV1VcebNKRdX2UKGgGR0BhXUcfeUILaAdN6ANoCEdAleK5AIIF/3V9lChoBkdAYmtgBLf1pWgHTegDaAhHQJXjQYj0L+h1fZQoaAZHQGPPrZrYXftoB03oA2gIR0CV5K7GvOhTdX2UKGgGR0BnMwtFrl/6aAdN6ANoCEdAleaD1f3N93V9lChoBkdAYM0UnG828GgHTegDaAhHQJXqxoSL61t1fZQoaAZHQGMC5JkGzKNoB03oA2gIR0CV7bPomoitdX2UKGgGR0BgfvY8Md92aAdN6ANoCEdAle7c+eOGTXV9lChoBkdAZZFg/C66KGgHTegDaAhHQJXxKzPa+N91fZQoaAZHQGNnY+bExZdoB03oA2gIR0CV9rfozN2UdX2UKGgGR0BmXgPVd5Y6aAdN6ANoCEdAlffMWbgCOnV9lChoBkdAZpmcFQl8gWgHTegDaAhHQJX6P3/Pw/h1fZQoaAZHQGbOTm4iHIpoB03oA2gIR0CWA6hePaL5dX2UKGgGR0BlxbM7lq8EaAdN6ANoCEdAlgOtHH3lCHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}